Question

In: Physics

Consider a Hohmann transfer orbit between Earth and Saturn (you may assume circular orbits). Describe the...

  1. Consider a Hohmann transfer orbit between Earth and Saturn (you may assume circular orbits). Describe the orbit in terms of its semi-major axis, period, and distance from the sun at aphelion and perihelion.

Solutions

Expert Solution

For a small body orbiting another much larger body, such as a satellite orbiting Earth, the total energy of the smaller body is the sum of its kinetic energy and potential energy, and this total energy also equals half the potential at the average distance (the semi-major axis):

Solving this equation for velocity results in the vis-viva equation,

where:

  • is the speed of an orbiting body,
  • is the standard gravitational parameter of the primary body, assuming is not significantly bigger than (which makes ),
  • is the distance of the orbiting body from the primary focus,
  • is the semi-major axis of the body's orbit.

Therefore, the delta-v (Δv) required for the Hohmann transfer can be computed as follows, under the assumption of instantaneous impulses:

to enter the elliptical orbit at from the circular orbit

to leave the elliptical orbit at to the circular orbit, where and r 2 are respectively the radii of the departure and arrival circular orbits; the smaller (greater) of and corresponds to the periapsis distance (apoapsis distance) of the Hohmann elliptical transfer orbit. Typically, is given in units of m3/s2, as such be sure to use meters, not kilometers, for and . The total is then:

Whether moving into a higher or lower orbit, by Kepler's third law, the time taken to transfer between the orbits is

(one half of the orbital period for the whole ellipse), where is length of semi-major axis of the Hohmann transfer orbit.

In application to traveling from one celestial body to another it is crucial to start maneuver at the time when the two bodies are properly aligned. Considering the target angular velocity being

angular alignment α (in radians) at the time of start between the source object and the target object shall be


Related Solutions

Two satellites are in circular orbits around the earth. The orbit for satellite A is at...
Two satellites are in circular orbits around the earth. The orbit for satellite A is at a height of 555 km above the earth’s surface, while that for satellite B is at a height of 778 km. Find the orbital speed for (a) satellite A and (b) satellite B.
Two satellites are in circular orbits around the earth. The orbit for satellite A is at...
Two satellites are in circular orbits around the earth. The orbit for satellite A is at a height of 458 km above the earth’s surface, while that for satellite B is at a height of 732 km. Find the orbital speed for (a) satellite A and (b) satellite B.
To get from Earth to Jupiter spacecraft follow the Hohmann Transfer orbit. Using data, you can...
To get from Earth to Jupiter spacecraft follow the Hohmann Transfer orbit. Using data, you can find online for the orbits of Earth, Jupiter and the Sun (don’t forget to cite it), and assuming that the orbits of Earth and Jupiter are circular with radii equal to their semi-major axes: a. Determine the semi-major axis of the Hohmann transfer orbit? b. Determine the speed of the spacecraft at the Earth’s orbit in the hohmann transfer orbit? c. Determine the speed...
To get from Earth to Jupiter spacecraft follow the Hohmann Transfer orbit. Using data, you can...
To get from Earth to Jupiter spacecraft follow the Hohmann Transfer orbit. Using data, you can find online for the orbits of Earth, Jupiter and the Sun (don’t forget to cite it), and assuming that the orbits of Earth and Jupiter are circular with radii equal to their semi-major axes: b. Determine the speed of the spacecraft at the Earth’s orbit in the hohmann transfer orbit? a. Determine the semi-major axis of the Hohmann transfer orbit?
7. To get from Earth to Jupiter spacecraft follow the Hohmann Transfer orbit. Using data, you...
7. To get from Earth to Jupiter spacecraft follow the Hohmann Transfer orbit. Using data, you can find online for the orbits of Earth, Jupiter and the Sun (don’t forget to cite it), and assuming that the orbits of Earth and Jupiter are circular with radii equal to their semi-major axes: b. Determine the speed of the spacecraft at the Earth’s orbit in the hohmann transfer orbit? a. Determine the semi-major axis of the Hohmann transfer orbit? c. .Determine the...
The Moon orbits Earth in a nearly circular orbit that lasts 27.32 days. 1) Determine the...
The Moon orbits Earth in a nearly circular orbit that lasts 27.32 days. 1) Determine the distance from the surface of the Moon to the surface of Earth in Mm. (Express your answer to three significant figures.) A planet orbits a star with an orbital radius of 1 AU. The star has a mass that is 1.60 times our own Sun's mass. 2) Determine the time for one revolution of the planet around the star in years. (Express your answer...
Q10. Assume that the Earth is orbiting the sun in a perfectly circular orbit. If the...
Q10. Assume that the Earth is orbiting the sun in a perfectly circular orbit. If the Earth is hit by a huge meteorite but its orbiting angular momentum is not changed (this can be the case if the hit is along the radial direction of the orbit), what would be the change in Earth’s orbit? A. No change B. Earth would move in a circular orbit with a larger radius C. Earth would move in a circular orbit with a...
Assume that the Moon's orbit around Earth us approximately circular, and use this to calculate the...
Assume that the Moon's orbit around Earth us approximately circular, and use this to calculate the distance to the Moon from Earth.
1.Consider a satellite of the earth in a circular orbit of radius R. Let M and...
1.Consider a satellite of the earth in a circular orbit of radius R. Let M and m be the mass of the earth and that of the satellite, respectively. Show that the centripetal acceleration of the satellite is aR = -(v^2/R)*(r/r) where v = |v| is the magnitude of the velocity V and r/r is a unit vector in the radial direction. 2.Using Newton's second low of motion and the law of universal gravitation, determine the speed v=|V| and the...
-The Moon orbits the Earth in an approximately circular path. The position of the Moon as...
-The Moon orbits the Earth in an approximately circular path. The position of the Moon as a function of time is given by x(t) = r cos(ωt) y(t) = r sin(ωt), where r = 3.84  108 m and ω = 2.46  10-6 radians/s. What is the average velocity of the Moon measured over the interval from t = 0 to t = 3.35 days? Find its magnitude, in m/s, and find its direction, given as an angle measured counterclockwise from the positive...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT