In: Chemistry
The mean free path of neon is 6.4 x 10^-2 m at a pressure of 1.00 x 10^-4 atm and 298 K. A neon atom has a mass of 3.351 x 10^-26 kg. Calculate the collision cross section and the collision frequency of neon under these conditions.
Pressure , P = 1.00 X 10-4 atm = 10.1325 Pa = 10.1325 Jm-3
Temperature , T = 298 K
Step 1: to calculate number of atoms per unit volume(number density), nd
Using Gas law : PV = nRT
PV = (N/NA)RT , [ no. of moles, n = no. of atoms, N / avogadro's no., NA]
R = 8.314 JK-1mol-1 NA = 6.022X1023mol-1
nd = N/V = PNA/RT
nd = (10.1325 Jm-3)(6.022X1023mol-1) / (8.314 JK-1mol-1)(298K)
nd = 2.4628 X 1021 m-3
Step 2: To calculate the collision cross section ,
mean free path, = 6.4 x 10-2m (given)
mean free path, = 1 / nd
so, = 1/ nd
= 1/(2.4628 X 1021 m-3)(6.4X10-2m) = 4.486 X 10-21 m2
The collision cross section of neon = 4.486 X 10-21 m2 =
step 3: To calculate the mean velocity , <v>
P = (1/3) nd × m× <v2> , m = mass of 1 neon atom , <v2> = mean square velocity
<v2> = (3 X P)/(nd × m) = (3 X 10.1325 Jm-3)/(2.4628 X 1021 m-3)(3.351x10-26kg)
<v2> = 3.6833X105m2s-2
<v> = 6.069 X 102m/s
Step 4: to calculate collision frequency , z
z = <v> nd
z = (4.486 X 10-21 m2)( 6.069 X 102m/s)(2.4628 X 1021 m-3)
z = 9482.4 s-1
the collision frequency of neon = 9482.4 s-1