Question

In: Physics

There is an elongated metal cylinder with a thin, hollow radius of R. The net propagation...

There is an elongated metal cylinder with a thin, hollow radius of R. The net propagation density is 2λ. An infinitely long conductor with a propagation density of λ lies along the central axis of the cylinder. When λ is positive, find the electric field strength at (a) the inner r <R of the cylinder, and (b) the outer r> R of the cylinder. (c) Determine the direction of the electric field for each. (Draw a picture and explain it)

Solutions

Expert Solution


Related Solutions

A solid sphere of radius R, a solid cylinder of radius R, and a hollow cylinder...
A solid sphere of radius R, a solid cylinder of radius R, and a hollow cylinder of radius R all have the same mass, and all three are rotating with the same angular velocity. The sphere is rotating around an axis through its center, and each cylinder is rotating around its symmetry axis. Which one has the greatest rotational kinetic energy? both cylinders have the same rotational kinetic energy the solid cylinder the solid sphere they all have the same...
A solid cylinder, a thin hollow cylinder (with circular cross-section), and a thick hollow cylinder (with...
A solid cylinder, a thin hollow cylinder (with circular cross-section), and a thick hollow cylinder (with a donut cross section), of equal masses radii, are simultaneously released from rest at the top of an inclined plane and roll without slipping down the plane. Which object reaches the bottom of the inclined plane first? A) The solid cylinder B) The thin hollow cylinder C) The thick hollow cylinder D) All objects reach the bottom at the same time Please provide explanation.
There is uniformly charged hollow cylinder The cylinder has radius R, length L, and total charge...
There is uniformly charged hollow cylinder The cylinder has radius R, length L, and total charge Q. It is centered on the z-axis, with one end at z=−L/2 and the other at z=+L/2.We are interested in finding the electric field generated by the cylinder at a point P located on the z-axis at z=z0. -Consider a thin ring segment of the cylinder, located at height z and having thickness dz. Enter an expression for the charge dQ of the ring?...
A thin-walled hollow cylinder with mass m1 and radius R1 rolls without slipping on the inner...
A thin-walled hollow cylinder with mass m1 and radius R1 rolls without slipping on the inner wall of a larger thin-walled hollow cylinder with mass m2 and radius R2 >> R1. Both cylinders' axes are aligned and horizontal, and some magical mechanism ensures this perfect friction contact between them. Unfortunately for you, the larger cylinder rolls without slipping on a horizontal surface. Describe the motion including small oscillation frequencies near any equilibria if the systems is released from rest with...
An infinitely long hollow cylinder of radius R is carrying a uniform surface charge density σ...
An infinitely long hollow cylinder of radius R is carrying a uniform surface charge density σ (φ). (a) Determine the general form of the solution of Laplace’s equation for this geometry. (b) Use the boundary condition σ(φ) = σ0cos(φ) to determine the potential inside and outside of the cylinder. (c) Using your answer to part (b), determine the electric field inside and outside of the cylinder.
Consider a hollow, infinite sphere of radius R. the hollow space is free of charge, but...
Consider a hollow, infinite sphere of radius R. the hollow space is free of charge, but a surface charge sigma = sigma not cos theta exists on the inside surface of the conductor at s =R. Can this sphere be a conductor? ( I.e, can you induce this charge on a conducting surface somehow)
A very long conducting tube (hollow cylinder) has inner radius a and outer radius b. It...
A very long conducting tube (hollow cylinder) has inner radius a and outer radius b. It carries charge per unit length ?? where ? is a positive constant with units of C/m. A line of charge lies along the axis of the tube. The line of charge has charge per unit length +?. Part E Calculate the magnitude the electric field in terms of ? and the distance r from the axis of the tube for r>b. Express your answer...
A very long conducting tube (hollow cylinder) has inner radius a and outer radius b. It...
A very long conducting tube (hollow cylinder) has inner radius a and outer radius b. It carries charge per unit length +?, where ? is a positive constant with units of C/m. A line of charge lies along the axis of the tube. The line of charge has charge per unit length +?. Part A Calculate the electric field in terms of ? and the distance r from the axis of the tube for r<a. Part B Calculate the electric...
A very long conducting tube (hollow cylinder) has inner radius a and outer radius b. It...
A very long conducting tube (hollow cylinder) has inner radius a and outer radius b. It carries charge per unit length ?? where ? is a positive constant with units of C/m. A line of charge lies along the axis of the tube. The line of charge has charge per unit length +?. Part B Find the direction of the electric field in terms of ?and the distance r from the axis of the tube forr<a. Find the direction of...
) A coaxial cable consists of a cylinder of radius ? surrounding by a thin cylindrical...
) A coaxial cable consists of a cylinder of radius ? surrounding by a thin cylindrical shell of radius 2?. Suppose the cable is along the ?-axis. The current density in inner cylinder is ? ⃗= (?0 + ??)?̂, where ?0 > 0 and ? > 0 are constant. The current in the outer shell, ?? ,is downward (−? direction). a) Find the magnetic field in regions 0 < ? < ?,? < ? < 2? and 2? < ?....
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT