In: Statistics and Probability
4) A) In a timeshare computer system, the number of teleport requests is 0.2 per millisecond, on average, and follows a Poisson distribution. So the probability that they won't come requests for the next three milliseconds is:
B) Certain resistors are manufactured with a tolerance of ± 10%. If we consider that the real resistance is evenly distributed within this interval, the probability that a resistance with value rated at 1000 Ω have an actual resistance between 990 and 1010 Ω is:
C) The asking price for a certain item is normally distributed with an average of $ 50.00 and deviation standard $ 5.00. Buyers are willing to pay an amount that is also distributed normally with a mean of $ 45.00 and standard deviation of $ 2.50. The probability that the transaction is made is:
a)
Mean/Expected number of events of interest for 3 millisecond: λ = 0.2*3= 0.6
| X | P(X) | 
| 0 | 0.5488 | 
b)
here a=   900
b=   1100
P (    990   ≤ X ≤   
1010   ) =(x2-x1)/(b-a) =   
0.1
c)
µ =    50      
           
           
σ =    5      
           
           
we need to calculate probability for ,  
           
           
       
P (   37.5   < X <  
52.5   )      
           
=P( (37.5-50)/5 < (X-µ)/σ < (52.5-50)/5 )  
           
           
       
          
           
           
P (    -2.500   < Z <   
0.500   )       
           
= P ( Z <    0.500   ) - P ( Z
<   -2.500   ) =   
0.6915   -    0.0062   =   
0.6853
THANKS
revert back for doubt
please upvote