In: Finance
A pension fund manager is considering three mutual funds. The first is a stock fund, the second is a long-term government and corporate bond fund, and the third is a T-bill money market fund that yields a sure rate of 5.5%. The probability distributions of the risky funds are:
Expected Return | Standard Deviation | |
Stock fund (S) | 15% | 32% |
Bond fund (B) | 9% | 23% |
The correlation between the fund returns is .15.
What is the expected return and standard deviation for the minimum-variance portfolio of the two risky funds? (Do not round intermediate calculations. Round your answers to 2 decimal places.)
Expected return | % |
Standard deviation | % |
Solution-
T- Bill Yield (T)= 5.5% | ||||||||||||||
ER(S)= 15% | ||||||||||||||
ER(B) = 9% | ||||||||||||||
SD (S)= 32% | ||||||||||||||
SD (B)= 23% | ||||||||||||||
Cor(S,B) = 0.15 | ||||||||||||||
Covariance (B,S)= Cor(S,B)*SD(S)*SD(B) | ||||||||||||||
Covariance (B,S)= 0.15*32%*23% | ||||||||||||||
Covariance (B,S)= 0.01104 | ||||||||||||||
Computation of portfolio invested in stock fund (S) | ||||||||||||||
Weight of Stock Fund (WS)= [ER(S) - (T)]* (SD(B))^2 - [ER(B) - (T)]*Cov(B,S)/ [ER(S) - (T)]* SD(B)^2 + [ER(B) - (T)]*SD(S)^2 - [ER(S) - (T) + ER(B) - (T)]* Cov(B,S) | ||||||||||||||
WS= [15% - 5.5%]*23%^2 - [9%-5.5%]*0.01104 / [15%- 5.5%]*23%^2 + [9% - 5.5%]*32%^2 - [15%-5.5%+9%-5.5%]*0.01104 | ||||||||||||||
WS= 9.5%*0.0529 - 3.5%*0.01104 / 9.5%* 0.0529 +3.5%*0.1024 - 13%*0.01104 | ||||||||||||||
WS= 0.004639/ 0.0071743 | ||||||||||||||
WS= 0.6466 = 64.66% | ||||||||||||||
WB= 1- WS | ||||||||||||||
WB= 1-0.6466 | ||||||||||||||
WB= 0.3534 = 35.34% | ||||||||||||||
Calculation of Expected Return | ||||||||||||||
ER(S,B) = WS * ER(S) + WB* ER(B) | ||||||||||||||
ER(S,B) = 64.66%* 15% +35.34% *9% = | ||||||||||||||
ER(S,B) = 12.88% | ||||||||||||||
Calculation of Standard Deviation | ||||||||||||||
SD(S,B) = [(WS^2 * SD(S)^2 + WB^2 * SD(B)^2 + 2*WS*WB*Cov(B,S)]^1/2 | ||||||||||||||
SD(S,B) = [(64.66%)^2*(32%)^2 + (35.34%)^2*(23%)^2 +(2*64.66%*35.34%*0.01104)]^1/2 | ||||||||||||||
SD(S,B) = 23.34% | ||||||||||||||