Question

In: Statistics and Probability

Find x1 and x2. left bracket Start 2 By 2 Matrix 1st Row 1st Column negative...

Find x1 and x2.

left bracket Start 2 By 2 Matrix 1st Row 1st Column negative 4 2nd Column 1 2nd Row 1st Column 5 2nd Column 4 End Matrix right bracket left bracket Start 2 By 1 Matrix 1st Row 1st Column x 1 2nd Row 1st Column x 2 End Matrix right bracket plus left bracket Start 2 By 1 Matrix 1st Row 1st Column 11 2nd Row 1st Column negative 19 EndMatrix right bracket equals left bracket Start 2 By 1 Matrix 1st Row 1st Column negative 11 2nd Row 1st Column 40 End Matrix right bracket

Solutions

Expert Solution

To find x1 and x2 :

Step 1:

Multiplying first 2 X 2 matrix with 2 X 1 vector, we get:

Step 2:
Adding the 2 X 1 matrices on LHS, we get:

Step 3:

Thus, we get:

and

Step 4:
Simplifying, we get:

                 (1)

and

                   (2)

Step 5:

4 X (1) gives:

          (3)

Step 6:

(2) - (3) gives:

So,

Substituting in (1), we get:

So,

we get:

So,

Answer is:


Related Solutions

Determine whether the set StartSet left bracket Start 3 By 1 Matrix 1st Row 1st Column...
Determine whether the set StartSet left bracket Start 3 By 1 Matrix 1st Row 1st Column 1 2nd Row 1st Column 0 3rd Row 1st Column negative 3 EndMatrix right bracket comma left bracket Start 3 By 1 Matrix 1st Row 1st Column negative 3 2nd Row 1st Column 1 3rd Row 1st Column 6 EndMatrix right bracket comma left bracket Start 3 By 1 Matrix 1st Row 1st Column 1 2nd Row 1st Column negative 1 3rd Row 1st...
Find the equilibrium vector for the transition matrix below. left bracket Start 3 By 3 Matrix...
Find the equilibrium vector for the transition matrix below. left bracket Start 3 By 3 Matrix 1st Row 1st Column 0.3 2nd Column 0.3 3rd Column 0.4 2nd Row 1st Column 0.2 2nd Column 0.4 3rd Column 0.4 3rd Row 1st Column 0.3 2nd Column 0.2 3rd Column 0.5 EndMatrix right bracket, The equilibrium vector is?
a.) Find a basis for the row space of matrix B. b.) Find a basis for the column space of matrix B.
For the given matrix B= 1 1 1 3 2 -2 4 3 -1 6 5 1 a.) Find a basis for the row space of matrix B. b.) Find a basis for the column space of matrix B. c.)Find a basis for the null space of matrix B. d.) Find the rank and nullity of the matrix B.
for input matrix a , write a function to return the element in row 2 column...
for input matrix a , write a function to return the element in row 2 column 3 of that matrix
How are the column space and the row space of a matrix A related to the...
How are the column space and the row space of a matrix A related to the column space and row space of its reduced row echelon form? How does this prove the column rank of A equals the row rank?
Let X1 and X2 have the joint pdf f(x1,x2) = 2 0<x1<x2<1; 0.  elsewhere (a) Find the...
Let X1 and X2 have the joint pdf f(x1,x2) = 2 0<x1<x2<1; 0.  elsewhere (a) Find the conditional densities (pdf) of X1|X2 = x2 and X2|X1 = x1. (b) Find the conditional expectation and variance of X1|X2 = x2 and X2|X1 = x1. (c) Compare the probabilities P(0 < X1 < 1/2|X2 = 3/4) and P(0 < X1 < 1/2). (d) Suppose that Y = E(X2|X1). Verify that E(Y ) = E(X2), and that var(Y ) ≤ var(X2).
Amy has utility function u (x1, x2) = min { 2*(x1)^2*x2, x1*(x2)^2 }. Derive Amy's demand...
Amy has utility function u (x1, x2) = min { 2*(x1)^2*x2, x1*(x2)^2 }. Derive Amy's demand function for x1 and x2. For what values (if any) of m, p1, and p2 are the goods gross complements or gross substitutes of each other?
x1 + x2 - 2x4 = 2 x1 + x2 + 2x3 + 6x4 + x5...
x1 + x2 - 2x4 = 2 x1 + x2 + 2x3 + 6x4 + x5 = 8 −2x1 - 2x2 + x3 + 8x4 = −1 3x3 + 12x4 + 2x5 = 9 Let the linear system be given. a. Find the reduced row eelon form of the combined matrix (augmented matrix) of the system. b. Is the system consistent? If the system is consistent, find the overall solution of the system. c. Do all the solutions of the...
Find the basis for the row space, columnspace, and nullspace for the following matrix. Row 1...
Find the basis for the row space, columnspace, and nullspace for the following matrix. Row 1 {3,4,0,7} Row 2 {1,-5,2,-2} Row 3 {-1,4,0,3} Row 4 {1,-1,2,2}
Let A be an n × n real symmetric matrix with its row and column sums...
Let A be an n × n real symmetric matrix with its row and column sums both equal to 0. Let λ1, . . . , λn be the eigenvalues of A, with λn = 0, and with corresponding eigenvectors v1,...,vn (these exist because A is real symmetric). Note that vn = (1, . . . , 1). Let A[i] be the result of deleting the ith row and column. Prove that detA[i] = (λ1···λn-1)/n. Thus, the number of spanning...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT