Question

In: Physics

The parallel axis theorem relates Icm, the moment of inertia of an object about an axis passing through its center of m...

The parallel axis theorem relates Icm, the moment of inertia of an object about an axis passing through its center of mass, to Ip, the moment of inertia of the same object about a parallel axis passing through point p. The mathematical statement of the theorem is Ip=Icm+Md2, where d is the perpendicular distance from the center of mass to the axis that passes through point p, and M is the mass of the object. 


Part A 

Suppose a uniform slender rod has length L and mass m. The moment of inertia of the rod about about an axis that is perpendicular to the rod and that passes through its center of mass is given by Icm=112mL2. Find Iend, the moment of inertia of the rod with respect to a parallel axis through one end of the rod. Express Iend in terms of m and L. Use fractions rather than decimal numbers in your answer. 


Part B 

Now consider a cube of mass m with edges of length 

a. The moment of inertia Icm of the cube about an axis through its center of mass and perpendicular to one of its faces is given by Icm=16ma2. (Figure 1) Find Iedge, the moment of inertia about an axis p through one of the edges of the cube Express Iedge in terms of m and a. Use fractions rather than decimal numbers in your answer.

Solutions

Expert Solution


Related Solutions

Find the mass, the center of mass, and the moment of inertia about the z-axis for...
Find the mass, the center of mass, and the moment of inertia about the z-axis for the hemisphere x^2+y^2+z^2=1, z >(greater than or equal to) 0 if density is sqrt(x^2+y^2+z^2)
A regulation table tennis ball has a mass of 2.7g and is 40mm in diameter. What is its moment of inertia about an axis that passes through its center?
A regulation table tennis ball has a mass of 2.7g and is 40mm in diameter. What is its moment of inertia about an axis that passes through its center?  
Calculate the moments of inertia (about any axis through the center) for a spherical shell and...
Calculate the moments of inertia (about any axis through the center) for a spherical shell and a solid sphere. What is the ratio between the two moments of inertia. Both spherical shell and solid sphere have mass M, radius R, and uniform mass densities (σ and ρ respectively).
The moment of inertia of a thin ring of mass M and radius R about its...
The moment of inertia of a thin ring of mass M and radius R about its symmetry axis is ICM = MR2 Kira is working the ring-toss booth at a local carnival. While waiting for customers, Kira occupies her time by twirling one of the plastic rings of mass M and radius R about her finger. Model the motion of the plastic ring as a thin ring rotating about a point on its circumference. What is the moment of inertia of...
A Ferris wheel with radius 14.0 m is turning about a horizontal axis through its center,...
A Ferris wheel with radius 14.0 m is turning about a horizontal axis through its center, as shown in the figure below. The linear speed of a passenger on the rim is constant and equal to 6.30m/s. A) What is the magnitude of the passenger's acceleration as she passes through the lowest point in her circular motion? Express your answer in meters per second squared to three significant figures. B) What is the direction of the passenger's acceleration as she...
A toy top with a spool of diameter 5.0cm has a moment of inertia of 3.0x10^-5kg x m^2 about its rotation axis.
A toy top with a spool of diameter 5.0cm has a moment of inertia of 3.0x10^-5kg x m^2 about its rotation axis. To get the top spinning, its string is pulled with a tension of .30 N. How long does it take for the top to complete the first five revolutions? The string is long enough that it is wrapped around the top more than five turns
A hollow ball has mass M=2.0kg, radius R=0.35m, and moment of inertia about the center of...
A hollow ball has mass M=2.0kg, radius R=0.35m, and moment of inertia about the center of mass I=(2/3)MR2. The ball is thrown without bouncing, to the right with an initial speed 2.0m/s and backspin. The hoop moves across the rough floor (coefficient of sliding friction = 0.25) and returns to its original position with a speed of 0.5 m/s. All surfaces and the hoop may be treated as ideally rigid. Develop an expression for angular velocity of the hoop as...
String is wrapped around an object of mass M = 0.3 kg and moment of inertia...
String is wrapped around an object of mass M = 0.3 kg and moment of inertia I = 0.01 kg·m2. You pull the string with your hand straight up with some constant force F such that the center of the object does not move up or down, but the object spins faster and faster (see the figure). This is like a yo-yo; nothing but the vertical string touches the object. When your hand is a height y0 = 0.26 m...
explain how to calculate the moment of inertia of a disk, we will take the example of a uniform thin disk which is rotating about an axis through its centre.
 explain how to calculate the moment of inertia of a disk, we will take the example of a uniform thin disk which is rotating about an axis through its centre.
For the shape shown below, calculate the moment of inertia about the x axis. (Figure 8)The...
For the shape shown below, calculate the moment of inertia about the x axis. (Figure 8)The dimensions are d1=345 mm, d2=160 mm, d3=120 mm, and r=80 mm. For the shape from Part C (shown again here for reference), calculate the moment of inertia about the y axis.(Figure 8)The dimensions
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT