Question

In: Statistics and Probability

Suppose that a subset of 4 balls will be randomly selected and removed from an urn...

Suppose that a subset of 4 balls will be randomly selected and removed from an urn initially containing 6 blue balls and 6 green balls, and then another subset of 4 balls will be randomly selected and removed from the 8 balls that remain (after the first subset of 4 balls is removed). Letting X be the number of these subsets that contain more blue balls than green balls, give the value of E(X). (Note: This problem may be solved in more than one way. One way to do it is to let Y1 be the number of blue balls in the first subset of size 4 that is selected, and use E(X) = E(E(X|Y1))

Solutions

Expert Solution


Related Solutions

An urn contains six white balls and four black balls. Two balls are randomly selected from...
An urn contains six white balls and four black balls. Two balls are randomly selected from the urn. Let X represent the number of black balls selected. (a) Identify the probability distribution of X. State the values of the parameters corresponding to this distribution. (b) Compute P(X = 0), P(X = 1), and P(X = 2). (c) Consider a game of chance where you randomly select two balls from the urn. You then win $2 for every black ball selected...
An urn contains 6 red balls and 4 green balls. Three balls are chosen randomly from...
An urn contains 6 red balls and 4 green balls. Three balls are chosen randomly from the urn, without replacement. (a) What is the probability that all three balls are red? (Round your answer to four decimal places.) (b) Suppose that you win $20 for each red ball drawn and you lose $10 for each green ball drawn. Compute the expected value of your winnings.
An urn contains 10 red balls and 5 green balls. Balls are randomly selected, one at...
An urn contains 10 red balls and 5 green balls. Balls are randomly selected, one at a time, with replacement, until a red one is obtained. What is the probability that exactly k draws are needed? What is the probability that at least k draws are needed? Define a random variable associated with this experiment. Determine its probability mass function and cumulative distribution function, sketch their graphs. Find the expectation, variance and standard deviation of X.
In a certain lottery, an urn contains balls numbered 1 to 34. From this urn, 4 balls are chosen randomly, without replacement
In a certain lottery, an urn contains balls numbered 1 to 34. From this urn, 4 balls are chosen randomly, without replacement. For a $1 bet, a player chooses one set of four numbers. To win, all four numbers must match those chosen from the urn. The order in which the balls are selected does not matter. What is the probability of winning this lottery with one ticket?
An urn contains 7 red and 10 blue balls. If 4 balls are to be randomly...
An urn contains 7 red and 10 blue balls. If 4 balls are to be randomly selected without replacement, what is the probability that the first 2 selected are red and the last 2 selected are blue? Explain each step ?
An urn contains 4 red balls and 3 green balls. Two balls are sampled randomly. Let...
An urn contains 4 red balls and 3 green balls. Two balls are sampled randomly. Let W denote the number of green balls in the sample when the draws are done with replacement. Give the possible values and the PMF of W.
An urn contains 5 red, 3 orange, and 2 blue balls. Two balls are randomly selected...
An urn contains 5 red, 3 orange, and 2 blue balls. Two balls are randomly selected simultaneously. (a) What is the sample space? (b) Define an RV X as the number of orange balls selected. Show the map from the sample space to X. (c) Find the PMF of X. (d) Find the CDF of X. i have the solutions can one show how to find the probablity on 4c
Q2. Two balls are chosen randomly from an urn containing 8 white, 4 black, and 2...
Q2. Two balls are chosen randomly from an urn containing 8 white, 4 black, and 2 orange balls. Suppose that we win $2 for each black ball selected and we lose $1 for each white ball selected. Let X denote our winnings. What are the possible values of X, and what are the probabilities associated with each value i.e. create a discrete probability distribution table for winning amount. Compute the expected value of winnings and standard deviation of winnings. You...
In a certain​ lottery, an urn contains balls numbered 1 to 37. From this​ urn, 4...
In a certain​ lottery, an urn contains balls numbered 1 to 37. From this​ urn, 4 balls are chosen​ randomly, without replacement. For a​ $1 bet, a player chooses one set of four numbers. To​ win, all four numbers must match those chosen from the urn. The order in which the balls are selected does not matter. What is the probability of winning this lottery with one​ ticket?
There are 5 black balls and 9 red balls in an urn. If 4 balls are...
There are 5 black balls and 9 red balls in an urn. If 4 balls are drawn without replacement, what is the probability that exactly 3 black balls are drawn? Express your answer as a fraction or a decimal number rounded to four decimal places.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT