In: Statistics and Probability
Consider a study to relate birthweight (y) to the estriol level(x) of pregnant women. The data is below with 32 observations.
|
i |
Estriol(mg/24hr) |
Weight(g/100) |
i |
Estriol(mg/24hr) |
Weight(g/100) |
|
1 |
7 |
25 |
17 |
17 |
32 |
|
2 |
9 |
25 |
18 |
25 |
32 |
|
3 |
9 |
25 |
19 |
27 |
34 |
|
4 |
12 |
27 |
20 |
15 |
34 |
|
5 |
14 |
27 |
21 |
15 |
34 |
|
6 |
16 |
27 |
22 |
15 |
35 |
|
7 |
16 |
24 |
23 |
16 |
35 |
|
8 |
14 |
30 |
24 |
19 |
34 |
|
9 |
16 |
30 |
25 |
18 |
35 |
|
10 |
17 |
31 |
26 |
17 |
36 |
|
11 |
19 |
30 |
27 |
18 |
37 |
|
12 |
21 |
31 |
28 |
20 |
38 |
|
13 |
24 |
30 |
29 |
22 |
40 |
|
14 |
15 |
28 |
30 |
25 |
39 |
|
15 |
15 |
32 |
31 |
24 |
43 |
|
16 |
16 |
32 |
32 |
27 |
35 |
PLEASE SHOW ALL YOUR WORK:
level 0.05? :
Answer,
a)
Using Excel
=correl (array1 ,array2) gives correlation
r = 0.6376
b)
data
| estriol | weight |
| 7 | 25 |
| 9 | 25 |
| 9 | 25 |
| 12 | 27 |
| 14 | 27 |
| 16 | 27 |
| 16 | 24 |
| 14 | 30 |
| 16 | 30 |
| 17 | 31 |
| 19 | 30 |
| 21 | 31 |
| 24 | 30 |
| 15 | 28 |
| 15 | 32 |
| 16 | 32 |
| 17 | 32 |
| 25 | 32 |
| 27 | 34 |
| 15 | 34 |
| 15 | 34 |
| 15 | 35 |
| 16 | 35 |
| 19 | 34 |
| 18 | 35 |
| 17 | 36 |
| 18 | 37 |
| 20 | 38 |
| 22 | 40 |
| 25 | 39 |
| 24 | 43 |
| 27 | 35 |
Data -> data analysis -> regression
regression result
| SUMMARY OUTPUT
|
|||||
| Regression Statistics
|
|||||
| Multiple R
|
0.637614732 | ||||
| R Square | 0.406552547
|
||||
Adjusted R Square |
0.386770965 | ||||
| Standard Error
|
3.674949902 | ||||
| Observations | 32
|
||||
| ANOVA
|
|||||
| df | SS | MS | F | Significance F | |
| Regression | 1 | 277.5610465 | 277.5610465 | 20.55207472 | 8.66755E-05 |
|
Residual |
30 | 405.1577035 | 13.50525678 | ||
| Total |
31 | 682.71875 | |||
| Coefficients | Standard Error | t Stat | P-value | Lower 95% |
|
| Intercept | 21.61409884 | 2.401184916 | 9.001430373 | 4.99722E-10 | 16.71022502 |
| estriol | 0.598837209 | 0.132093346 | 4.533439612 | 8.66755E-05 | 0.329066606 |
c)
p-value of slope = 0.00009 < alpha
hence we reject the null hypothesis
we conclude that coefficient if birthweight differ from 0 significantly
p-value of slope = 0.00009 < alpha
hence we reject the null hypothesis
we conclude that coefficient if birthweight differ from 0 significantly