Question

In: Chemistry

Five kilograms of water is contained in a rigid, 3 m3 vessel at P = 1...

Five kilograms of water is contained in a rigid, 3 m3 vessel at P = 1 bar.

A. What is the temperature and physical state (liquid, vapor, or both liquid and vapor) of the water?

B. What is the specific internal energy of the water in the vessel?

Solutions

Expert Solution

This is the correct step by step solution founded in the text book:

Hope this helps


Related Solutions

Q1 (a)0.5 kg of water is contained in a rigid vessel at a temperature of 125oC...
Q1 (a)0.5 kg of water is contained in a rigid vessel at a temperature of 125oC and a pressure of 232.1 kPa. The specific enthalpy is 1050 kJ•kg-1. Which of the following could also be correct? (A) v = 0.001065 m3 •kg-1 (B) v = 0.7706 m3 •kg-1 (C) x = 0.24 (D) x = 0.5 (b).0.020 kg of air, initially at 20oC is compressed in a perfectly insulated and sealed cylinder which is fitted with a moveable piston. A...
Water is contained in a closed, rigid, 0.2 m3 tank at an initial pressure of 5...
Water is contained in a closed, rigid, 0.2 m3 tank at an initial pressure of 5 bar and a quality of 50%. Heat transfer occurs until the tank contains only saturated vapor. Determine a)the final mass of vapor in the tank, in kg,b) the final pressure, in bar.
Five kilograms of steam contained in a 2-m3 cylinder at 40 kPa is compressed isentropically to...
Five kilograms of steam contained in a 2-m3 cylinder at 40 kPa is compressed isentropically to 5000 kPa. What is the work needed? Please show correct work. Answer: 185 kJ
Two kilograms of air is stored in a rigid volume of 2 m3 with the temperature...
Two kilograms of air is stored in a rigid volume of 2 m3 with the temperature initially at 300°C. Heat is transferred from the air until the pressure reaches 120 kPa. Calculate the entropy change of (a) the air and (b) the universe if the surroundings are at 27°C.
2. A 1.00 m3 rigid vessel is filled with steam with a quality of 98.0% at...
2. A 1.00 m3 rigid vessel is filled with steam with a quality of 98.0% at 180◦C. Energy is added to the vessel until the pressure reaches 3,000 kPa. Determine the following: a) The initial pressure in the vessel b) The mass of water in the vessel c) The final temperature in the vessel d) The change in enthalpy
10 kg of steam is contained at 10 bar in a rigid vessel of volume 2.275...
10 kg of steam is contained at 10 bar in a rigid vessel of volume 2.275 m3. The vessel is cooled until the pressure in the vessel is 7 bar. Calculate the amount of heat removed from the steam.
An ideal monatomic gas is contained in a vessel of constant volume 0.210 m3. The initial...
An ideal monatomic gas is contained in a vessel of constant volume 0.210 m3. The initial temperature and pressure of the gas are 300 K and 5.00 atm, respectively. The goal of this problem is to find the temperature and pressure of the gas after 13.0 kJ of thermal energy is supplied to the gas. (a) Use the ideal gas law and initial conditions to calculate the number of moles of gas in the vessel. mol (b) Find the specific...
An ideal monatomic gas is contained in a vessel of constant volume 0.350 m3. The initial...
An ideal monatomic gas is contained in a vessel of constant volume 0.350 m3. The initial temperature and pressure of the gas are 300 K and 5.00 atm, respectively. The goal of this problem is to find the temperature and pressure of the gas after 29.0 kJ of thermal energy is supplied to the gas. (a) Use the ideal gas law and initial conditions to calculate the number of moles of gas in the vessel. in mol (b) Find the...
Nitrogen gas is contained in a rigid 1-m3 tank, initially at 5 bar, 300 K. Heat...
Nitrogen gas is contained in a rigid 1-m3 tank, initially at 5 bar, 300 K. Heat transfer to the contents of the tank occurs until the temperature has increased to 400 K. During the process, a pressure-relief valve allows nitrogen to escape, maintaining constant pressure in the tank. Neglecting kinetic and potential energy effects, and using the ideal gas model with constant specific heats evaluated at 350 K, determine (a) the mass of nitrogen that escapes, in kg, and (b)...
A steam boiler of volume 2.3 m3 initially contained 1.7 m3 liquid water in equilibrium with...
A steam boiler of volume 2.3 m3 initially contained 1.7 m3 liquid water in equilibrium with 0.6 m3 of vapour at 100 kPa. The boiler is heated keeping the inlet and discharge valves closed. The relief valve is set to lift when the pressure in the boiler reaches 5500 kPa. Determine the amount of heat supplied to the contents in the boiler before the relief valve lifts.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT