Let (G,+) be an abelian group and U a subgroup of G. Prove that
G is the direct product of U and V (where V a subgroup of G) if
only if there is a homomorphism f : G → U with f|U =
IdU
G
is a group and H is a normal subgroup of G. List the elements of
G/H and then write the table of G/H.
1. G=Z10, H= {0,5}. (Explain why G/H is congruent to Z5)
2. G=S4 and H= {e, (12)(34), (13)(24), (14)(23)
Consider the group homomorphism φ : S3 ×
S5→ S5 and φ((σ, τ )) = τ .
(a) Determine the kernel of φ. Prove your answer. Call K the
kernel.
(b) What are all the left cosets of K in S3×
S5 using set builder notation.
(c) What are all the right cosets of K in S3 ×
S5 using set builder notation.
(d) What is the preimage of an element σ ∈ S5 under
φ?
(e) Compare your answers...
Let G be a group and K ⊂ G be a normal subgroup. Let H ⊂ G be a
subgroup of G such that K ⊂ H Suppose that H is also a normal
subgroup of G. (a) Show that H/K ⊂ G/K is a normal subgroup. (b)
Show that G/H is isomorphic to (G/K)/(H/K).
Let G be a group and let N ≤ G be a normal subgroup.
(i) Define the factor group G/N and show that G/N is a
group.
(ii) Let G = S4, N = K4 = h(1, 2)(3, 4),(1, 3)(2, 4)i ≤ S4. Show
that N is a normal subgroup of G and write out the set of cosets
G/N.
Let φ : G1 → G2 be a group homomorphism. (abstract algebra)
(a) Suppose H is a subgroup of G1. Define φ(H) = {φ(h) | h ∈ H}.
Prove that φ(H) is a subgroup of G2.
(b) Let ker(φ) = {g ∈ G1 | φ(g) = e2}. Prove that ker(φ) is a
subgroup of G1.
(c) Prove that φ is a group isomorphism if and only if ker(φ) =
{e1} and φ(G1) = G2.