Question

In: Economics

A consumer’s utility of income is given by the function ??(. ). The consumer has initial...

A consumer’s utility of income is given by the function ??(. ). The consumer has initial income $??, but risks losing $?? with probability ??. If a company offers insurance, the contract consists of coverage $?? at price $?? per dollar of coverage.

(a) Using the notation above, what is the consumer’s expected utility with insurance?

(b) Define actuarially fair insurance. What are the sufficient assumptions for insurance to be actuarially fair?

(c) Prove that, if insurance is actuarially fair, the consumer will demand full insurance coverage: ??∗ = ??.

(d) Prove that, if insurance charges a loading factor $??, such that ?? = ?? + ??, the consumer will demand less than full insurance: ??∗ < ??.

Solutions

Expert Solution


Related Solutions

Suppose a consumer’s utility function is given by U(X,Y) = X*Y. Also, the consumer has $200...
Suppose a consumer’s utility function is given by U(X,Y) = X*Y. Also, the consumer has $200 to spend, and the price of X, PX = 5, and the price of Y, PY = 2. a) How much X and Y should the consumer purchase in order to maximize her utility? b) How much total utility does the consumer receive? c) Now suppose PX decreases to 1.25. What is the new bundle of X and Y that the consumer will demand?...
1. Consumer’s utility function is: U (X,Y) = 10X + Y. Consumer’s income M is 40...
1. Consumer’s utility function is: U (X,Y) = 10X + Y. Consumer’s income M is 40 euros, the price per unit of good X (i.e. Px ) is 5 euros and the price per unit of good Y (i.e. Py) is 1 euro. a) What is the marginal utility of good X (MUx) for the consumer? b) What is the marginal utility of good Y (MUy) for the consumer? How do I calculate these?
Assume a consumer’s utility function is U = √q1 + 2√q2 and her total income is...
Assume a consumer’s utility function is U = √q1 + 2√q2 and her total income is $90. The price of both good 1 and good 2 is $1. (a) (5 points) What is the bundle that maximizes this consumer’s utility? What is the consumer’s utility level at that point? (b) (5 points) Suppose that the price of good 1 drops to $0.50. What is the new bundle that maximizes this consumer’s utility? What is the consumer’s utility at this point?...
A consumer has the following utility function ?(?, ?) = ?^0.2 ?^0.8 and Income=$800, Px =2,...
A consumer has the following utility function ?(?, ?) = ?^0.2 ?^0.8 and Income=$800, Px =2, Py =4 Note that ??? = 0.20 (y/x)^0.80 and ??? = 0.8 (x/y)^0.20 a) Find the initial equilibrium (x, y, U) b) Assume that Px increases by 20% and Py decreases by the same percentage. Find the new equilibrium (x, y, U). c) Find the income and substitution effects of the above price changes.
A consumer’s utility function is U(x1,x2)=3x1+x21/3. If the consumer weakly prefers the bundle (x1’,x2’) to the...
A consumer’s utility function is U(x1,x2)=3x1+x21/3. If the consumer weakly prefers the bundle (x1’,x2’) to the bundle (x1’’,x2’’), will he necessarily also weakly prefer the bundle (x1’+1,x2’) to the bundle (x1’’+1,x2’’)?
Suppose a consumer has a utility function given by u(x, y) = x + y, so...
Suppose a consumer has a utility function given by u(x, y) = x + y, so that the two goods are perfect substitutes. Use the Lagrangian method to fully characterize the solution to max(x,y) u(x, y) s.t. x + py ≤ m, x ≥ 0, y ≥ 0, where m > 0 and p < 1. Evaluate and interpret each of the multipliers in this case. What happens to your solution when p > 1? What about when p =...
Suppose that a consumer has a utility function U(x1,x2) = x1 ^0.5 x2^0.5 . Initial prices...
Suppose that a consumer has a utility function U(x1,x2) = x1 ^0.5 x2^0.5 . Initial prices are p1 =1and p2 =1,andincomeism=100. Now, the price of good1 increases to 2. (a) On the graph, please show initial choice (in black), new choice (in blue), compensating variation (in green) and equivalent variation (in red). (b) What is amount of the compensating variation? How to interpret it? (c) What is amount of the equivalent variation? How to interpret it?
A consumer’s utility function is U = logx + logy2 , where and y are two...
A consumer’s utility function is U = logx + logy2 , where and y are two consumption goods. The price of x is $2.00 per unit and the price of y $5.00 per unit. Her budget is $1000. Solve her utility maximization problem and find her optimal consumption of x and y. Will your answers change if the consumer’s utility function is U = logxy2 instead – why or why not?
Suppose a consumer has a utility function u(x, y) = 2x + 3y. The consumer has...
Suppose a consumer has a utility function u(x, y) = 2x + 3y. The consumer has an income $40 and the price of x is $1 and the price of y is $2. Which bundle will the consumer choose to consume? Determine the demand functions for x and for y. Repeat the exercise if, instead, the consumer’s utility function is u(x, y) = min{x, 2y}.
Consider a representative consumer with the utility function ?(?, ?) = ?? + ? and the...
Consider a representative consumer with the utility function ?(?, ?) = ?? + ? and the budget constraint ??? + ??? ≤ ?. Assume throughout that all prices and quantities are positive and infinitely divisible. Find the equation of an arbitrary indifference curve for this utility function (evaluated at ̅ utility level ?). Sketch of graph of this indifference curve (be sure to justify its shape and to derive/demark any points of intersection with the axes).
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT