Question

In: Advanced Math

16. Which of the following statements is false? (a) Let S = {v1, v2, . ....

16. Which of the following statements is false?

(a) Let S = {v1, v2, . . . , vm} be a subset of a vector space V with dim(V) = n. If m > n, then S is linearly dependent.

(b) If A is an m × n matrix, then dim Nul A = n.

(c) If B is a basis for some finite-dimensional vector space W, then the change of coordinates matrix PB is always invertible.

(d) dim(R17) = 17.

(e) If B1 and B2 are both bases for the same vector space, then B1 and B2 have the same number of vectors.

Solutions

Expert Solution


Related Solutions

(a) If V1,V2⊂V show that (V2^⊥)⊂(V1^⊥) implies V1⊂V2 (b) If V1,V2⊂V , show that (V1+V2)^⊥=(V1^⊥)∩(V2^⊥) where...
(a) If V1,V2⊂V show that (V2^⊥)⊂(V1^⊥) implies V1⊂V2 (b) If V1,V2⊂V , show that (V1+V2)^⊥=(V1^⊥)∩(V2^⊥) where we write V1+V2 to be the subspace of V spanned by V1 and V2 .
v1=[0,1,4] v2=[-4,-5,7] v3=[14,10,8] b=[16,18,19]. Let v1,v2, and v3 be three nonzero vectors in R3. Suppose v2...
v1=[0,1,4] v2=[-4,-5,7] v3=[14,10,8] b=[16,18,19]. Let v1,v2, and v3 be three nonzero vectors in R3. Suppose v2 is not a scalar multiple of either v1 or v3 and v3 is not a scalar multiple of either v1 or v2. Does it follow that every vector in R3 is in span{v1,v2,v3}?
Let v1 be an eigenvector of an n×n matrix A corresponding to λ1, and let v2,...
Let v1 be an eigenvector of an n×n matrix A corresponding to λ1, and let v2, v3 be two linearly independent eigenvectors of A corresponding to λ2, where λ1 is not equal to λ2. Show that v1, v2, v3 are linearly independent.
Let v1 = [-0.5 , v2 = [0.5 , and v3 = [-0.5 -0.5 -0.5   ...
Let v1 = [-0.5 , v2 = [0.5 , and v3 = [-0.5 -0.5 -0.5    0.5 0.5    0.5    0.5 -0.5]    0.5] 0.5] Find a vector v4 in R4 such that the vectors v1, v2, v3, and v4 are orthonormal.
Let G a graph of order 8 with V (G) = {v1, v2, . . ....
Let G a graph of order 8 with V (G) = {v1, v2, . . . , v8} such that deg vi = i for 1 ≤ i ≤ 7. What is deg v8? Justify your answer. Please show all steps thank you
True or False. 1. If the set {v1,v2} is a basis of R^2, then the set...
True or False. 1. If the set {v1,v2} is a basis of R^2, then the set {v1,v1+v2} is also a basis of R^2. 2.If W be a vector space and V1,V2 are subspaces of W, then V1 u V2 is also a subspace of W. V1 u V2 denotes the union of V1 and V2, i.e. the set of vectors which belong to either V1 or V2 (or to both). 3.If W be a vector space and V1,V2 are subspaces...
if {v1,v2,v3} is a linearly independent set of vectors, then {v1,v2,v3,v4} is too.
if {v1,v2,v3} is a linearly independent set of vectors, then {v1,v2,v3,v4} is too.
Let T : Rn →Rm be a linear transformation. (a) If {v1,v2,...,vk} is a linearly dependent...
Let T : Rn →Rm be a linear transformation. (a) If {v1,v2,...,vk} is a linearly dependent subset of Rn, prove that {T(v1),T(v2),...,T(vk)} is a linearly dependent subset of Rm. (b) Suppose the kernel of T is {0}. (Recall that the kernel of a linear transformation T : Rn → Rm is the set of all x ∈ Rn such that T(x) = 0). If {w1,w2,...,wp} is a linearly independent subset of Rn, then show that {T(w1),T(w2),...,T(wp)} is a linearly independent...
#1 Let H= Span{v1,v2,v3,v4}. For each of the following sets of vectors determine whether H is...
#1 Let H= Span{v1,v2,v3,v4}. For each of the following sets of vectors determine whether H is a line, plane ,or R3. Justify your answers. (a)v1= (1,2,−2),v2= (7,−7,−7),v3= (16,−12,−16),v4= (0,−3,−3) (b)v1= (2,2,2),v2= (6,6,5),v3= (−16,−16,−14),v4= (28,28,24) (c)v1= (−1,3,−3),v2= (0,0,0),v3= (−2,6,−6),v4= (−3,9,−9) #2 Plot the linesL1: x= t[4−1] and L2: x= [−4−2] + t[4−1] using their vector forms. If[12k]is onL2. What is the value of k?
V1 V2 V3 V4 V1 1.0 V2 .27 1.0 V3 -.13 .65 1.0 V4 .20 -.15...
V1 V2 V3 V4 V1 1.0 V2 .27 1.0 V3 -.13 .65 1.0 V4 .20 -.15 -.72 1.0 IN THIS EXERCISE, YOU WILL SEE A CORRELATION MATRIX. EXAMINE THE MATRIX AND ANSWER THE QUESTIONS THAT FOLLOW. 1. Which two variables have the strongest (largest) relationship? 2. Which two variables have the weakest (smallest) relationship? 3. Which two variables have the strongest positive relationship? 4. which two variables have the stronger negative relationship? 5. Which two variables have the weakest positive...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT