An x-ray photon with
initial energy 133 keV is scattered by an electron through an angle
60° with respect to its initial direction.
A)Find the wavelength
of the scattered photon after the collision with the electron.
B) Find the final
kinetic energy of the electron after the collision.
C) Find the angle
(with respect to the initial direction) for the scattered electron
after the collision.
A 1.56Mev photon from Rh103 is compton scattered at an angle of
150 degree. calculate the energy of the scattered photon and the
compton shift in wavelength .what is the momentum of the scattered
photon? calculate the energy required by the recoil electron .what
is the recoil angle of the electron? what is the maximum fraction
of its energy that this photon could lose in a single compton
scattering?
An incident x-ray photon is scattered from a free
electron that is initially at rest. The photon is scattered
straight back at an angle of 180∘ from its initial direction. The
wavelength of the scattered photon is 8.70×10−2 nm
Part A
What is the wavelength of the incident photon?
λ =
m
Part B
What is the magnitude of the momentum of the electron after the
collision?
P= _________ kg⋅m/s
Part C
What is the kinetic energy of the electron...
A 0.046-nm x-ray is incident on a stationary electron. A
scattered photon is observed at 94°.
Find the energy of the scattered photon E'γ=
______ keV and its wavelength λ'= _________ nm
Find the kinetic energy of recoiled electron
K= _______keV
Find the speed of recoiled electron as a fraction of speed of
light: v/c= ________
A 0.077-nm x-ray is incident on a stationary electron. A
scattered photon is observed at 102°. Find the energy of the
scattered photon E'γ= keV and its wavelength λ'= nm. Find the
kinetic energy of recoiled electron K= keV. Find the speed of
recoiled electron as a fraction of speed of light: v/c= .
1. An x-ray photon of initial wavelength (λ 0) = 0.097 nm is
scattered off an electron (initially at rest). If the photon is
backscattered (scattering angle = 180°), what is the resulting
wavelength of the scattered photon? Give your answer in nm, but
enter only the numerical part in the box.
2. An x-ray photon of initial wavelength (λ 0) = 0.093 nm is
scattered off an electron (initially at rest). If the photon is
backscattered (scattering angle =...
The scattered photon has an energy of 120 keV and the
electron recoils with an energy of 40 keV in Compton
scattering.
Find:
(a) the incident photo wavelength
(b) the scattering angle of the photon
(c) the angle at which the electron recoils
a. Compute the energy of a photon with incident energy 200 kev
scattered at 90°
in a Compton event.
b. Compute the energy of the backscattered photon from a 400 kev
incident
photon.
c. Compute the energy of the recoil electron.
Find the fractional energy loss for a 20-keV X-ray scattered
from an electron at angle 180 and compare with 2E/E0. (b) Find the
final energy for a 10-MeV gamma ray scattered from an electron at
180 and compare with E0/2.
An X-ray photon scatters from a free electron at rest at an
angle of 110° relative to the incident direction.
(a) If the scattered photon has a wavelength of 0.270 nm, what is
the wavelength of the incident photon?
(b) Determine the energy of the incident and scattered
photons.
c) Find the kinetic energy of the recoil electron.