Question

In: Physics

Use the definition of the partial current to prove the linear extrapolation distance for a vacuum...

Use the definition of the partial current to prove the linear extrapolation distance for a vacuum boundary condition (the distance where the flux function goes to zero) is d = 2/3λ , where λ is the mean free math defined as λ = 1/Σtr = 3D (D is the diffusion coefficient)

Solutions

Expert Solution


Related Solutions

Prove that the minimum distance of a linear code is the minimum weight of any nonzero...
Prove that the minimum distance of a linear code is the minimum weight of any nonzero codeword.
1A) Let ?(?) = 3? + 2. Use the ? − ? definition to prove that...
1A) Let ?(?) = 3? + 2. Use the ? − ? definition to prove that lim?→1 3? + 2 ≠ 1. Definition and proof. 1B) Let ?(?) = 2?^2 − 4? + 5. Use the ? − ? definition to prove that lim?→−1 2?^2 − 4? + 5 ≠ 8. definition and ? − ? Proof.
Use the definition of absolute value and a proof by cases to prove that for all...
Use the definition of absolute value and a proof by cases to prove that for all real numbers x, | − x + 2| = |x − 2|. (Note: Forget any previous intuitions you may have about absolute value; only use the rigorous definition of absolute value to prove this statement.)
Extrapolation with linear models beyond the given data is highly accurate. TRUE or FALSE? a. True...
Extrapolation with linear models beyond the given data is highly accurate. TRUE or FALSE? a. True b. False Linear regression models may not always acccurately reflect the pattern of data from which they are made a. True b. False The "Portion of Variability" is also known as the a. Correlation coefficient b. Regression line c. Fitted Value d. Coefficient of determination Investigating the difference between the predicted value of y and the actual value y a. Least Squares Regression b....
1. Use the definition of convexity to prove that the function f(x) = x2 - 4x...
1. Use the definition of convexity to prove that the function f(x) = x2 - 4x + 8 is convex. Is this function strictly convex? 2. Use the definition of convexity to prove that the function f(x)= ax + b is both convex and concave for any a•b ≠ 0.
1. Use the ε-δ definition of continuity to prove that (a) f(x) = x 2 is...
1. Use the ε-δ definition of continuity to prove that (a) f(x) = x 2 is continuous at every x0. (b) f(x) = 1/x is continuous at every x0 not equal to 0. 3. Let f(x) = ( x, x ∈ Q 0, x /∈ Q (a) Prove that f is discontinuous at every x0 not equal to 0. (b) Is f continuous at x0 = 0 ? Give an answer and then prove it. 4. Let f and g...
a) use the sequential definition of continuity to prove that f(x)=|x| is continuous. b) theorem 17.3...
a) use the sequential definition of continuity to prove that f(x)=|x| is continuous. b) theorem 17.3 states that if f is continuous at x0, then |f| is continuous at x0. is the converse true? if so, prove it. if not find a counterexample. hint: use counterexample
Use the ε-δ definition of limits to prove that lim x3 −2x2 −2x−3 = −6. 3...
Use the ε-δ definition of limits to prove that lim x3 −2x2 −2x−3 = −6. 3 markx→1 Hint: This question needs students have a thorough understanding of the proof by the ε-δdefinition as well as some good knowledge of what is learnt in Math187/188 and in high school, such as long division, factorization, inequality and algebraic manipulations. End of questions.
Differential Geometry (Mixed Use of Vector Calculus & Linear Algebra) 1A. Prove that if p=(x,y) is...
Differential Geometry (Mixed Use of Vector Calculus & Linear Algebra) 1A. Prove that if p=(x,y) is in the set where y<x and if r=distance from p to the line y=x then the ball about p of radius r does not intersect with the line y=x. 1B. Prove that the set where y<c is an open set.
1. The linear correlation coefficient r measures of the linear relationship between two variables. (a) Distance...
1. The linear correlation coefficient r measures of the linear relationship between two variables. (a) Distance (b) size (c) strength (d) direction 2. 10 pairs of sample data were obtained from a study which looked at household income and the number of people in the household who smoked (cigarettes). The value of the linear correlation coefficient r was computed and a result of - 0.989 was obtained. All of the following (below) are conclusions that can be drawn from the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT