In: Physics
1). Calculate the current intensity \( I_x \)
2). Générateur de Thévenin entre les bornes 𝑎−𝑏
Solution
1). Calculate the current intensity \( I_x \)
Redraw the circuit for the ;opp analysis,
Apply KCL at node A.
\( I_1+I_x =1.5I_x \)
\( I_1=0.5I_x \) (1)
Redraw the circuit for the ;opp analysis,
Apply KVL in both mesh.
\( -6-5I_1+3I_x+4I_x=0 \)
From equation (1) :
\( -6-5(0.5I_x)+3I_x+4I_x=0 \)
\( -6-2.5I_x+3I_x+4I_x=0 \)
\( -6+4.5I_x=0 \)
\( 4.5I_x=6=>I_x=\frac{6}{4.5}=1.33A \)
2). Générateur de Thévenin entre les bornes 𝑎−𝑏
For \( {E}_{th} \)
\( {E}_{th}=4I_x \)
\( =4(\frac{6}{4.5})=5.33V \)
To calculate \( {I}_{sc} \) , short the terminal a-b , The circuit would be drawn as,
Apply KVL in large loop .
\( -6-5I_1+3{I}_{sc}=0 \)
Form equation (1) :
\( -6-5(0.5I_x)+3{I}_{sc}=0 \)
\( -6-2.5{I}_{sc}+3{I}_{sc}=0 \)
\( 0.5{I}_{sc}=6=>{I}_{sc}=\frac{6}{0.5}=12A \)
Now, calculate \( {R}_{th} \)
\( {R}_{th}=\frac{{E}_{th}}{{I}_{sc}}=\frac{5.33}{12}=0.44\Omega \)
1). Thus, \( I_x=1.33A \)
2). Thus, \( {E}_{th}=5.33V \) & \( {R}_{th}=0.44\Omega \)