Compute the integral.
F(t)=∫02πln(cos2(x)+t2sin2(x))dx,(t>0)
=>F′(t)=∫02πcos2(x)+t2sin2(x)2tsin2(x)dx=∫02π1+t2tan2xcos2x12t.tan2xcos2x1dx
Let u=tanx=>du=cos2x1dx . then x=0=>u−>0,x=2π=>u−>∞
=>F′(t)=∫0∞(1+t2u2)(1+u2)2t.u2du
we have (1+t2u2)(1+u2)2tu2=(1+(tu)21−1+u21).1−t22t
=>F′(t)=1−t22t∫0∞(1+t2u21−1+u21)du
=1−t22t[t1arctan(tu)−arctan(u)]∣0∞
=1−t22t[2π(t1−1)]=1+tπ
=>F(t)=∫1+tπdt=πln(1+t)+c , (*)
we have F(1)=0 but (*) F(1)=πln2+c
=>πln2+c=0=>c=−πln2
Therefore, F(t)=πln(1+t)−πln2=πln(21+t)
Therefore, F(t)=πln(1+t)−πln2=πln(21+t)