Question

In: Math

Use the Midpoint Rule for triple integral to estimate the value of the integral. Divide B...

Use the Midpoint Rule for triple integral to estimate the value of the integral. Divide B into eight sub-boxes of equal size. (Round your answer to three decimal places.)

2 sin (2xy2z3) dV, where
B


B =

(x, y, z) | 0 ≤ x ≤ 4, 0 ≤ y ≤ 2, 0 ≤ z ≤ 1

Solutions

Expert Solution


Related Solutions

Use the Trapezoidal Rule, the Midpoint Rule, and Simpson's Rule to approximate the given integral with...
Use the Trapezoidal Rule, the Midpoint Rule, and Simpson's Rule to approximate the given integral with the specified value of n. (Round your answers to six decimal places.) 2 1 6 ln(x) 1 + x dx, n = 10
Use the Trapezoidal Rule, the Midpoint Rule, and Simpson's Rule to approximate the given integral with...
Use the Trapezoidal Rule, the Midpoint Rule, and Simpson's Rule to approximate the given integral with the specified value of n. (Round your answers to six decimal places.) π/2 0 3 2 + cos(x) dx,    n = 4 (a) the Trapezoidal Rule (b) the Midpoint Rule (c) Simpson's Rule
Use the Trapezoidal Rule, the Midpoint Rule, and Simpson's Rule to approximate the given integral with...
Use the Trapezoidal Rule, the Midpoint Rule, and Simpson's Rule to approximate the given integral with the specified value of n. (Round your answers to six decimal places.) 4 0 ln(3 + ex) dx,    n = 8 (a) the Trapezoidal Rule (b) the Midpoint Rule (c) Simpson's Rule
Use the Trapezoidal Rule, the Midpoint Rule, and Simpson's Rule to approximate the given integral with...
Use the Trapezoidal Rule, the Midpoint Rule, and Simpson's Rule to approximate the given integral with the specified value of n. (Round your answers to six decimal places.) π/2 0 3 1 + cos(x) dx,    n = 4
Use the Trapezoidal Rule, the Midpoint Rule, and Simpson's Rule to approximate the given integral with...
Use the Trapezoidal Rule, the Midpoint Rule, and Simpson's Rule to approximate the given integral with the specified value of n. (Round your answers to six decimal places.) 5 2 cos(7x) x dx, n = 8 1 (a) the Trapezoidal Rule (b) the Midpoint Rule (c) Simpson's Rule
Use the Trapezoidal Rule, the Midpoint Rule, and Simpson's Rule to approximate the given integral with...
Use the Trapezoidal Rule, the Midpoint Rule, and Simpson's Rule to approximate the given integral with the specified value of n. (Round your answers to six decimal places.) 2 0 e^x/ 1 + x^2 dx, n = 10 (a) the Trapezoidal Rule (b) the Midpoint Rule (c) Simpson's Rule
use the a) midpoint rule, b) Trapezoidal rule, and c) the Simpsons rule to approximate the...
use the a) midpoint rule, b) Trapezoidal rule, and c) the Simpsons rule to approximate the given integral with the value of n and round to 4 decimal places integral (from 0 to 1) e^-x^2 dx, n = 10 show work please
Use (a) the Trapezoidal Rule, (b) the Midpoint Rule, and (c) Simpson’s Rule to approximate the...
Use (a) the Trapezoidal Rule, (b) the Midpoint Rule, and (c) Simpson’s Rule to approximate the given integral with the specific value of n. (Round your answer to six decimal places).   ∫13 sin (?) / ? ?? , ? = 4 Please show all work.
Approximating Integrals. What value of ? should be used to guarantee that a Midpoint Rule estimate...
Approximating Integrals. What value of ? should be used to guarantee that a Midpoint Rule estimate of ∫ ??2?? 1 0 is accurate to within 0.01?
Evaluate the following integral using the Midpoint Rule​ M(n), the Trapezoidal Rule​ T(n), and​ Simpson's Rule​...
Evaluate the following integral using the Midpoint Rule​ M(n), the Trapezoidal Rule​ T(n), and​ Simpson's Rule​ S(n) using nequals4. Integral from 2 to 6 StartFraction dx Over x cubed plus x plus 1 EndFraction Using the Midpoint​ Rule, ​M(4)equals
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT