Question

In: Economics

2. Suppose utility for a consumer of cereal (x) and milk (z) is U = min(x,...

2. Suppose utility for a consumer of cereal (x) and milk (z) is U = min(x, 2z), where 2 boxes of cereal are consumed with one carton of milk (x=2z).

a. What is the optimal consumption bundle if $42 are allocated to cereal and milk over a 6-month period, and the price of cereal is $3 and price of milk is $2?

b. Graph the situation, including indifference curves, budget line, and the optimal choice.

Solutions

Expert Solution

a. This is a case of an indifference where substitution of one product for another doesn't help. The consumer has a fixed bundle (or proportion) of the two goods, which in this case is 2 boxes of cereal and 1 carton of milk. This bundle costs $7, i.e., $3*2 + $2 = $8. He will consume $42/$8 = 5.25 such bundles over the 6 month period using his budget of $42

b. Pls see graph below. Milk on vertical axis and cereal on horizontal axis. Blue one is the budget line, orange ones indifference curves. The higher orange one is the IC that meets budget line at 10.5, 5.25


Related Solutions

Suppose utility for a consumer of movies (x) and golf (z) is U = 20x0.6z0.4. The...
Suppose utility for a consumer of movies (x) and golf (z) is U = 20x0.6z0.4. The consumer has set aside $1000 to consumer movies and golf for a year. If the price of movies is $20 and the price of golf is $30, what is the utility-maximizing consumption of movies and golf? (Use demand functions formula to solve). Show the optimal consumption bundle on a graph, showing a budget line (with intercepts), an indifference curve, and the optimal choice. Now...
Suppose utility for a consumer of movies (x) and golf (z) is U =  20x0.6z0.4.  The consumer has...
Suppose utility for a consumer of movies (x) and golf (z) is U =  20x0.6z0.4.  The consumer has set aside $1000 to consumer movies and golf for a year. If the price of movies is $20 and the price of golf is $30, what is the utility-maximizing consumption of movies and golf?  (Use demand functions formula to solve). Show the optimal consumption bundle on a graph, showing a budget line (with intercepts), an indifference curve, and the optimal choice. Now suppose the price...
Suppose a consumer has preferences represented by the utility function U(X,Y) = MIN[X,2Y]. Suppose PX =...
Suppose a consumer has preferences represented by the utility function U(X,Y) = MIN[X,2Y]. Suppose PX = 1 and PY = 2. Draw the Income Consumption Curve for this consumer for income values M = 100, M = 200, and M = 300. Your graph should accurately draw the budget constraints for each income level and specifically label the bundles that the consumer chooses for each income level. Also, for each bundle that the consumer chooses, draw the indifference curve that...
Suppose that the utility function of a consumer is U(x,y) = x ¼y ¾, where x...
Suppose that the utility function of a consumer is U(x,y) = x ¼y ¾, where x and y are the quantities of the good X and good Y consumed, respectively. The consumer's income is 400. (a) What is the demanded bundle when the price of good X is 10 and the price of good Y is 10? (b) Redo part (a) when the price of good X is doubled? (c) Redo part (a) when the price of good Y is...
Consider a consumer with the utility function U(X, Y) = X^2 Y^2 . This consumer has...
Consider a consumer with the utility function U(X, Y) = X^2 Y^2 . This consumer has an income denoted by I which is devoted to goods X and Y. The prices of goods X and Y are denoted PX and PY. a. Find the consumer’s marginal utility of X (MUX) and marginal utility of Y (MUY). b. Find the consumer’s marginal rate of substitution (MRS). c. Derive the consumer's demand equations for both goods as functions of the variables PX,...
"Suppose a consumer has preferences represented by the utility function U(X,Y) = X(^2)Y Suppose Py =...
"Suppose a consumer has preferences represented by the utility function U(X,Y) = X(^2)Y Suppose Py = 1, and the consumer has $360 to spend. Draw the Price-Consumption Curve for this consumer for income values Px =1, Px = 2, and Px = 5. Your graph should accurately draw the budget constraints for each income level and specifically label the bundles that the consumer chooses for each income level. Also for each bundle that the consumer chooses, draw the indifference curve...
A consumer has his preferences represented by the utility function U(x,y) = min {5x + 4y,...
A consumer has his preferences represented by the utility function U(x,y) = min {5x + 4y, 4x + 7y} if x is on the horizontal axis and y is on the vertical axis, what is the slope of his indifference curve at the point (10,10) a. -4/7 b. -5/4 c. -4/5 d. -7/4 e. -5/7
Suppose a consumer has a utility function u(x, y) = 2x + 3y. The consumer has...
Suppose a consumer has a utility function u(x, y) = 2x + 3y. The consumer has an income $40 and the price of x is $1 and the price of y is $2. Which bundle will the consumer choose to consume? Determine the demand functions for x and for y. Repeat the exercise if, instead, the consumer’s utility function is u(x, y) = min{x, 2y}.
Consider a consumer with preferences represented by the utility function: u(x, y) = x1/4y1/2 Suppose the...
Consider a consumer with preferences represented by the utility function: u(x, y) = x1/4y1/2 Suppose the consumer has income M = 10 and the prices are px=1 and Py = 2. (a) Are goods x and y both desirable? (b) Are there implications for the utility maximization problem for the consumer from your finding in 1a? If so, explain in detail. (c) Derive the utility maximizing bundle.
Consider a consumer with preferences represented by the utility function: u(x; y) = x1/4y1/2 Suppose the...
Consider a consumer with preferences represented by the utility function: u(x; y) = x1/4y1/2 Suppose the consumer has income M = 10 and the prices are px = 1 and py = 2. (a) Are goods x and y both desirable? (b) Are there implications for the utility maximization problem for the consumer from your finding in a? If so, explain in detail.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT