Question

In: Finance

It has been exactly 6 years since Alan bought his house for $375,000. Six years ago,...

It has been exactly 6 years since Alan bought his house for $375,000. Six years ago, he paid $75,000 as a down payment and took out a 35-year mortgage for the remaining amount with monthly payments and a quoted APR of 5.5% (with semi-annual compounding). Today, Alan has received a promotion to a higher paying managerial position at his firm. He has decided to pay part of his mortgage in order to reduce his monthly payments. Alan has already made his payment for this month, but he will now make a lumpsum payment of $75,000. What will be his new monthly payments (starting next month) for the rest of the mortgage term, assuming the interest rate stays the same?

Solutions

Expert Solution

EMI :
EMI or Instalment is sum of money due as one of several equal payments for loan/ Mortgage taken today, spread over an agreed period of time.

EMI = Loan / PVAF (r%, n)
PVAF = SUm [ PVF(r%, n) ]
PVF(r%, n) = 1 / ( 1 + r)^n
r = Int rate per period
n = No. of periods

How to calculate PVAF using Excel:
=PV(Rate,NPER,-1)
Rate = Disc Rate
NPER = No.of periods

Original Loan = Price - Down Payment

= $ 375000 - $ 75000

= $ 300000

Particulars Amount
Loan Amount $          300,000.00
Int rate per Month 0.4583%
No. of Months 420

EMI = Loan Amount / PVAF (r%, n)
Where r is Int rate per Month & n is No. of Months
= $ 300000 / PVAF (0.0046 , 420)
= $ 300000 / 186.2141
= $ 1611.05
Loan Outstanding after 6 Years:

Particulars Amount
Loan Amount $ 300,000.00
Int rate per Month 0.4583%
No. of Months 420
Outstanding Bal after 72
EMI $      1,611.05
Payments Left 348

Outstanding Bal = Instalment * [ 1 - ( 1 + r )^ - n ] / r
= $ 1611.05 * [ 1 - ( 1 + 0.004583 ) ^ - 348 ] / 0.004583
= $ 1611.05 * [ 1 - ( 1.004583 ) ^ - 348 ] / 0.004583
= $ 1611.05 * [ 1 - 0.203649 ] / 0.004583
= $ 1611.05 * [ 0.796351 ] / 0.004583
= $ 279939.18

r = Int Rate per period
n = Balance No. of periods

New balance after paying $ 75000

= $ 279939.18 - $ 75000

= $ 204939.18

New EMI:

Particulars Amount
Loan Amount $          204,939.18
Int rate per Month 0.4583%
No. of Months 348

EMI = Loan Amount / PVAF (r%, n)
Where r is Int rate per Month & n is No. of Months
= $ 204939.18 / PVAF (0.0046 , 348)
= $ 204939.18 / 173.7492
= $ 1179.51


Related Solutions

It has been exactly 6 years since Alan bought his house for $375,000. Six years ago,...
It has been exactly 6 years since Alan bought his house for $375,000. Six years ago, he paid $75,000 as a down payment and took out a 35-year mortgage for the remaining amount with monthly payments and a quoted APR of 5.5% (with semi-annual compounding). Today, Alan has received a promotion to a higher paying managerial position at his firm. He has decided to pay part of his mortgage in order to reduce his monthly payments. Alan has already made...
Jingfei bought a house 6 years ago for $200,000. Her down payment on the house was...
Jingfei bought a house 6 years ago for $200,000. Her down payment on the house was the minimum required 10% at that time she financed the remainder with a 30-year fixed rate mortgage. The annual interest rate was 8% and she was required to make monthly payments, and she has just made her 72th payment. A new bank has offered to refinance the remaining balance on Jingfei's loan and she will have to pay $1,320 per month for the next...
In a PCB factory, a plating line was bought 6 years ago for $300,040. Since it...
In a PCB factory, a plating line was bought 6 years ago for $300,040. Since it caught fire last night, its life span is much shortened and remains for only 1 more year from now. There would be no salvage value. (Round off your final answers to 2 decimal places) Since the fire suddenly shortened the life span of the plating line, the engineer wants to migrate the risk by subscribing a special Refitting Service Plan so that the life...
A man bought a machine for P66,463 six years ago. It has a salvage value of...
A man bought a machine for P66,463 six years ago. It has a salvage value of P11,373 four years from now. He sold it now for P12,930. What is the sunk cost or the value of the machine that the man lost if the depreciation method used is a Straight-Line method?
Five years ago, Marcus bought a house. He secured a mortgage from his bank for $1,720,000....
Five years ago, Marcus bought a house. He secured a mortgage from his bank for $1,720,000. The mortgage had monthly payments for 20 years with an interest rate of 6.0% compounded monthly. However, after five years, it is time to renegotiate the mortgage. Interest rates have fallen to 4.5% compounded monthly, and Marcus still intends to make monthly payments and to pay back the debt over the remaining 15 years. a) How much were Marcus' initial monthly payments? b) What...
Bubba bought his house 20 years ago, he is borrowed $200,000 with a 30-year mortgage with...
Bubba bought his house 20 years ago, he is borrowed $200,000 with a 30-year mortgage with a 5.0% APR. His mortgage broker has offered him a 10-year mortgage with a 4% APR with 3 points closing costs. What is Charlie's old monthly payment? What is the balance on Bubba's mortgage? What is Bubba's new monthly payment? What are Bubba's present value savings after paying the points if he plans to live in the house until the mortgage is paid off?
You own 30-year Treasury Bonds that you bought exactly 6 years ago. At the time (you...
You own 30-year Treasury Bonds that you bought exactly 6 years ago. At the time (you bought the TBonds when they were issued), the 30-year T-Bond yield was 3.75% APR (compounded semiannually). That yield was also the coupon rate used to compute the semi-annual coupon payments (the T-Bonds were issued exactly at par). The T-Bonds have a total face value of $50,000. You just received an interest payment, and the bonds will mature in exactly 24 years. You check today’s...
You bought your house five years ago and you believe you will be in the house...
You bought your house five years ago and you believe you will be in the house only about five more years before it gets too small for your family. Your original home value when you bought it was $500,000, you paid 10 percent down, and you financed closing costs equal to 3 percent of the mortgage amount. The mortgage was a 25-year fixed- rate mortgage with a 5 percent annual interest rate. Rates on 30-year mortgages are now at 3...
A company is considering replacing a machine that was bought six years ago for $50,000.
A company is considering replacing a machine that was bought six years ago for $50,000. The machine, however, can be repaired and its life extended by five more years. If the current machine is replaced, the new machine will cost $44,000 and will reduce the operating expenses by $6,000 per year. The seller of the new machine has offered a trade-in allowance of $15,000 for the old machine. If MARR is 12% per year before taxes, how much can the...
Dr. Jun bought a $330000 house 7 years ago. The house is now worth $627000. Originally,...
Dr. Jun bought a $330000 house 7 years ago. The house is now worth $627000. Originally, the house was financed by paying 35% down with the rest financed through a 20-year mortgage at 6% interest. After making 84 monthly house payments, he is now in need of cash, and would like to refinance the house. The finance company is willing to loan 85% of the current value of the house amortized over 25 years at 4% interest. How much cash...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT