Question

In: Physics

Suppose a uniformly charged (with a linear charge density z) wire starts at point 0 and...

Suppose a uniformly charged (with a linear charge density z) wire starts at point 0 and rises vertically along the positive y axis to a length z.

A)

Determine the x-component of the electric field Ex at point (x,0). That is, calculate E? near one end of a long wire, in the plane perpendicular to the wire.

Express your answer in terms of the variables l, z, x, and appropriate constants.

B)

Determine the y-components of the electric field Ey at point (x,0). Assume x>0.

Express your answer in terms of the variables l, z, x, and appropriate constants.

C) If the wire extends from y=0 to y= infinity , so that l=infinity, show that E? makes a 45? angle to the horizontal for any x.

Solutions

Expert Solution

Here we apply electric field superposition principle for continuous charge distribution and using integral method we find bet electric field.


Related Solutions

A rubber ball with a radius of 10.0 cm is uniformly charged with a charge density...
A rubber ball with a radius of 10.0 cm is uniformly charged with a charge density of p . The electric field at position “X”, 5.00 cm from the center of the ball, is pointing toward the center of the sphere with a magnitude of 2 5.00 10^2 N/ C . What is the magnitude of the electric field 12.00 cm from the center of the sphere? Neglect any dielectric effect of the rubber
Shown is a uniformly charged inner insulating sphere with radius a and with charge density given...
Shown is a uniformly charged inner insulating sphere with radius a and with charge density given by ρ = ρ0(r3/a3). Outside of it is a conducting shell of inner radius b and outer radius c. This spherical shell also has double the charge of the inner non-conducting sphere. (So, if the inner sphere had charge “+Q”, the outer shell has charge “+2Q”.) The space between the sphere and the shell is empty. a) Describe/draw the charge distribution on the outer...
A solid sphere of radius a is uniformly charged with a total charge Q > 0....
A solid sphere of radius a is uniformly charged with a total charge Q > 0. a. Use Gauss’s law to determine the electric field everywhere. b. Where is the magnitude of the electric field the largest? c. What is its value there? d. Find two distances from the centre of the sphere where the electric field has half of its maximum value.
A uniformly charged disk of radius 35.0 cm carries a charge density of 6.40 ✕ 10-3...
A uniformly charged disk of radius 35.0 cm carries a charge density of 6.40 ✕ 10-3 C/m2. Calculate the electric field on the axis of the disk at the following distances from the center of the disk. (a) 5.00 cm MN/C (b) 10.0 cm MN/C (c) 50.0 cm MN/C (d) 200 cm MN/C
A)A straight, nonconducting plastic wire 7.50cm long carries a charge density of 130nC/m distributed uniformly along...
A)A straight, nonconducting plastic wire 7.50cm long carries a charge density of 130nC/m distributed uniformly along its length. It is lying on a horizontal tabletop. -Find the magnitude and direction of the electric field this wire produces at a point 5.00cm directly above its midpoint. B) pick one of the two - electric field is directed upward - electric field is directed downward C) If the wire is now bent into a circle lying flat on the table, find the...
A straight, nonconducting plastic wire 7.50cm long carries a charge density of 130nC/m distributed uniformly along...
A straight, nonconducting plastic wire 7.50cm long carries a charge density of 130nC/m distributed uniformly along its length. It is lying on a horizontal tabletop. Part A Find the magnitude and direction of the electric field this wire produces at a point 5.00cm directly above its midpoint. Part C If the wire is now bent into a circle lying flat on the table, find the magnitude and direction of the electric field it produces at a point 5.00cm directly above...
A uniform line charge of linear charge density = 2.9 nC/m extends from x = 0...
A uniform line charge of linear charge density = 2.9 nC/m extends from x = 0 to x = 5 m. a) What is the total charge? b) Find the electric field on the x axis at x = 6 m. c)Find the electric field on the x axis at x = 11 m. d)Find the electric field on the x axis at x = 250 m e) Find the field at x = 250 m, using the approximation that...
Density, density, density. (a) A charge -347e is uniformly distributed along a circular arc of radius...
Density, density, density. (a) A charge -347e is uniformly distributed along a circular arc of radius 4.30 cm, which subtends an angle of 44o. What is the linear charge density along the arc? (b) A charge -347e is uniformly distributed over one face of a circular disk of radius 3.10 cm. What is the surface charge density over that face? (c) A charge -347e is uniformly distributed over the surface of a sphere of radius 5.30 cm. What is the...
Density, density, density. (a) A charge -347e is uniformly distributed along a circular arc of radius...
Density, density, density. (a) A charge -347e is uniformly distributed along a circular arc of radius 4.30 cm, which subtends an angle of 44o. What is the linear charge density along the arc? (b) A charge -347e is uniformly distributed over one face of a circular disk of radius 3.10 cm. What is the surface charge density over that face? (c) A charge -347e is uniformly distributed over the surface of a sphere of radius 5.30 cm. What is the...
Density, density, density. (a) A charge -321e is uniformly distributed along a circular arc of radius...
Density, density, density. (a) A charge -321e is uniformly distributed along a circular arc of radius 4.00 cm, which subtends an angle of 72o. What is the linear charge density along the arc? (b) A charge -321e is uniformly distributed over one face of a circular disk of radius 2.10 cm. What is the surface charge density over that face? (c) A charge -321e is uniformly distributed over the surface of a sphere of radius 4.30 cm. What is the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT