In: Finance
Assume you have an adjustable rate mortgage with interest rates of 6% for year 1, 7% for year 2, 5% for year 3 and 4% for the remaining years of a 10 year mortgage. What is the rate of return if the original mortgage at time 0 is $700,000 and payments are made annually?
5.05%
| Step-1:Calculation of cumulative discount factor | ||||||||||
| Discount factor of Year: | ||||||||||
| 1 | = | 1.06^-1 | = | 0.943396 | ||||||
| 2 | = | 1.07^-1 | * | 1.06^-1 | = | 0.881679 | ||||
| 3 | = | 1.05^-1 | * | 1.07^-1 | * | 1.06^-1 | = | 0.839694 | ||
| 4 | = | 1.04^-1 | * | 1.05^-1 | * | 1.07^-1 | * | 1.06^-1 | = | 0.807398 |
| 5 | = | 1.04^-2 | * | 1.05^-1 | * | 1.07^-1 | * | 1.06^-1 | = | 0.776344 |
| 6 | = | 1.04^-3 | * | 1.05^-1 | * | 1.07^-1 | * | 1.06^-1 | = | 0.746485 |
| 7 | = | 1.04^-4 | * | 1.05^-1 | * | 1.07^-1 | * | 1.06^-1 | = | 0.717774 |
| 8 | = | 1.04^-5 | * | 1.05^-1 | * | 1.07^-1 | * | 1.06^-1 | = | 0.690167 |
| 9 | = | 1.04^-6 | * | 1.05^-1 | * | 1.07^-1 | * | 1.06^-1 | = | 0.663622 |
| 10 | = | 1.04^-7 | * | 1.05^-1 | * | 1.07^-1 | * | 1.06^-1 | = | 0.638098 |
| Total | 7.704658 | |||||||||
| Step-2:Calculation of equivalent annual payment | ||||||||||
| Equivalent annual payment | = | Mortgage at time 0 | / | Cumulative discount factor | ||||||
| = | $ 7,00,000.00 | / | 7.704658 | |||||||
| = | $ 90,854.13 | |||||||||
| Step-3:Calculation of rate of return | ||||||||||
| Rate of return | =rate(nper,pmt,pv,fv) | |||||||||
| = 5.05% | ||||||||||
| Where, | ||||||||||
| nper | = | 10 | ||||||||
| pmt | = | $ -90,854.13 | ||||||||
| pv | = | $ 7,00,000.00 | ||||||||
| fv | = | 0 |