Question

In: Chemistry

A solution of hydrofluoric acid was prepared by dissolving 0.5mol HF in 2*10^2 g water. What...

A solution of hydrofluoric acid was prepared by dissolving 0.5mol HF in 2*10^2 g water. What is the boiling points of this solution if only 50% of the acid dissociates? The K boiling for water is 0.512c/m

Solutions

Expert Solution

Solution :-

0.50 mol HF dissolved in 2*10^2 g water

50 % dissociation

Means 0.5*50 % /100 % = 0.25

So the moles of H+ and F- formed are 0.25 each

And HF moles remain = 0.5-0.25 = 0.25

So the total particles in the solution = 0.25 + (0.25*2) = 0.75

Now lets calculate the molaity

Molality = moles / kg solvent

                = 0.75 mol / 0.200 kg

                = 3.75 m

Now lets calculate the change in the boiling point.

Delta Tb = Kb * m

              = 0.512 C/m * 3.75 m

              = 1.92 C

Boiling point of solution = boiling point of pure water + delta Tb           

                                             = 100 C + 1.92 C

                                            = 101.92 C


Related Solutions

A solution is prepared by dissolving 23.7 g of CaCl2 in 375 g of water. The...
A solution is prepared by dissolving 23.7 g of CaCl2 in 375 g of water. The density of the resulting solution is The mole fraction of Cl- in this solution is __________ M.
A solution is prepared by dissolving 23.7 g of CaCl2 in 375 g of water. The...
A solution is prepared by dissolving 23.7 g of CaCl2 in 375 g of water. The density of the resulting solution is 1.05 g/mL. The concentration of CaCl2 in this solution is M
A solution of an unknown acid is prepared by dissolving 0.250 g of the unknown in...
A solution of an unknown acid is prepared by dissolving 0.250 g of the unknown in water to produce a total volume of 100.0 mL. Half of this solution is titrated to a phenolphthalein endpoint, requiring 12.2 mL of 0.0988 M KOH solution. The titrated solution is re-combined with the other half of the un-titrated acid and the pH of the resulting solution is measured to be 4.02. What is are the Ka value for the acid and the molar...
A solution is prepared by dissolving 29.2 g of glucose (C6H12O6) in 355 g of water....
A solution is prepared by dissolving 29.2 g of glucose (C6H12O6) in 355 g of water. The final volume of the solution is 378 mL . For this solution, calculate each of the following. molarity molality percent by mass mole fraction mole percent
A solution was prepared by dissolving 26.0 g of KCl in 225 g of water. Part...
A solution was prepared by dissolving 26.0 g of KCl in 225 g of water. Part A: Calculate the mole fraction of KCl in the solution. Part B: Calculate the molarity of KCl in the solution if the total volume of the solution is 239 mL. Part C: Calculate the molality of KCl in the solution.
A solution of sucrose is prepared by dissolving 0.5 g in 100 g of water. Calculate:...
A solution of sucrose is prepared by dissolving 0.5 g in 100 g of water. Calculate: a. Percent weight in weight b. The molal concentration of sucrose and water c. The mole fraction of sucrose and water in the solution
A solution was prepared by dissolving 31.0 g of KCl in 225 g of water. Part...
A solution was prepared by dissolving 31.0 g of KCl in 225 g of water. Part A: Calculate the mass percent of KCl in the solution. Part B: Calculate the mole fraction of the ionic species KCl in the solution. Part C: Calculate the molarity of KCl in the solution if the total volume of the solution is 239 mL. Part D: Calculate the molality of KCl in the solution.
A solution was prepared by dissolving 39.0 g of KCl in 225 g of water. Part...
A solution was prepared by dissolving 39.0 g of KCl in 225 g of water. Part A: Calculate the mole fraction of the ionic species KCl in the solution. Express the concentration numerically as a mole fraction in decimal form. Note: The answer is not 0.0419.. Part B: Calculate the molarity of KCl in the solution if the total volume of the solution is 239 mL. Express your answer with the appropriate units. Part C: Calculate the molality of KCl...
A solution of a theoretical triprotic acid was prepared by dissolving 4.251 g of solid in...
A solution of a theoretical triprotic acid was prepared by dissolving 4.251 g of solid in enough DI water to make 500.0 mL of solution. 13.65 mL of a 0.572 M solution was required to titrate 20.00 mL of this acid's solution. What is the molar mass of the acid?
a) What is the molarity of the solution that was prepared by dissolving 3.25 g of...
a) What is the molarity of the solution that was prepared by dissolving 3.25 g of sulfuric acid in water to a total volume of 500.0 mL? b)What is the molarity of the hydrogen ion in part a if you assume the sulfuric acid ionizes completely? Write a balanced chemical equation.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT