Question

In: Physics

A)Which of the following is NOT a valid boundary condition for a particle inside a 1D...

A)Which of the following is NOT a valid boundary condition for a particle inside a 1D box of finite length L? For this problem, assume that the potential energy outside the box is infinite.

1-When x = 0, PHI = 0.

2-The particle can only be inside the box.

3-The wave function is complex.

4-If the wavefunction is normalized, the integral of the complex conjugate from 0 to L will be 1.

5-When x = L, PHI = 0.

B)Looking at the energy eigenvalues for a 1D particle in a box, which of the following can we conclude about the change in energy between levels?

1-Energy level spacing increases when the box becomes more confined.

2-Energy level spacing increases as Planck's constant increases.

3-Energy level spacing increases when particle mass decreases and when the box becomes more confined.

4-Energy level spacing increases when particle mass decreases.

5-Energy level spacing does not change with particle mass.

C)One argon molecule is confined in 1.0 m3 box at 298 K. The probability of the Ar molecule being in the ground state (n=1) is very small. Why?

1-The change in energy between levels is very small compared to kT.

2-The partition function for this molecule is very large.

3-The box is much larger than the de Broglie wavelength of argon.

4-All of these answers are correct.

Solutions

Expert Solution


Related Solutions

Consider the particle-in-a-box problem in 1D. A particle with mass m is confined to move freely...
Consider the particle-in-a-box problem in 1D. A particle with mass m is confined to move freely between two hard walls situated at x = 0 and x = L. The potential energy function is given as (a) Describe the boundary conditions that must be satisfied by the wavefunctions ψ(x) (such as energy eigenfunctions). (b) Solve the Schr¨odinger’s equation and by using the boundary conditions of part (a) find all energy eigenfunctions, ψn(x), and the corresponding energies, En. (c) What are...
Create a java application that can solve the following differential equation and boundary condition with the...
Create a java application that can solve the following differential equation and boundary condition with the Runge Kutta method and the secant method. x' = f(t,x) = x + 0.09x2 + cos(10*t) differential equation x(0) + x(1) - 3.0 = 0            boundary condition Starting with the initial guesses 0.7 and 1.0 for the (unknown) initial value, x(0), obtain an approximation to x(0) {for the final solution, x(t)} such that the boundary condition is satisfied to within a tolerance of 10-4 ....
7. Consider two noninteracting particles in a 1D simple harmonic oscillator (SHO) potential, which has 1-particle...
7. Consider two noninteracting particles in a 1D simple harmonic oscillator (SHO) potential, which has 1-particle spatial wavefunctions ψ n ( x), where n = 0, 1, 2, … (we ignore spin by assuming both particles have the same spin quantum number or are spin 0). These wavefunctions are normalized to 1 and satisfy ψ n * ( x)ψ m ( x)dx −∞ ∞ ∫ = 0 when n ≠ m , i.e., they are orthogonal. The energies are !ω0...
particle of mass m, which moves freely inside an infinite potential well of length a, is...
particle of mass m, which moves freely inside an infinite potential well of length a, is initially in the state Ψ(x, 0) = r 3 5a sin(3πx/a) + 1 √ 5a sin(5πx/a). (a) Normalize Ψ(x, 0). (b) Find Ψ(x, t). (c) By using the result in (b) calculate < p2 >. (d) Calculate the average energy
Solve the following ordinary differential equations by separating variables and integration. 1. y'sinx=ylny, the boundary condition...
Solve the following ordinary differential equations by separating variables and integration. 1. y'sinx=ylny, the boundary condition (b.c.) is that the function passes through (y=e,x=pi/3) 2. y'+2xy2=0, b.c. (y=1;x=2) 3. y'-xy=x, b.c. (y=1;x=0)
Indicate which of the following are valid C++ variable names and which are not. If not,...
Indicate which of the following are valid C++ variable names and which are not. If not, state the reason the name is invalid. Variable Name Valid – Yes/No If Invalid – Reason income 2time int Tom's two fold c3po income#1 item
Q2/ In one of applications, wanted to condition laboratory at inside design condition DBT-24 °C and...
Q2/ In one of applications, wanted to condition laboratory at inside design condition DBT-24 °C and 50% Rh and outside design condition DBT-44 °C and WBT-27 °C. Total sensible load for the space is 35 kW and total latent load for the space is 19 kW. Rate of supplied air to the space is 11050 m'/hr and rate of outside ventilation air is 4250 m/hr. The recireulated air is mixing with the outside air and then entering to cooling coil...
In this project we will consider a particle sitting at the origin inside of a square...
In this project we will consider a particle sitting at the origin inside of a square whose sides intersect at the points (-10, -10), (-10, 10), (10, -10), and (10, 10). Each second, the particle moves in a random direction a random distance. That distance has an X as well as a Y component, each of which are standard normally distributed. 1.1 [8 points] Use R-Studio to model the following scenario: the particle moves every second as described above, use...
For a reaction to be endothermic, which of the following relationships is valid? For a reaction...
For a reaction to be endothermic, which of the following relationships is valid? For a reaction to be endothermic, which of the following relationships is valid?   The energy required to break bonds is greater than the energy involved in bond formation.   The energy required to break bonds is less than the energy involved in bond formation.   The energy required to break bonds is the same as the energy involved in bond formation.   The number of bonds...
Which of the following statements is true? a. It is possible that the APT is valid...
Which of the following statements is true? a. It is possible that the APT is valid and the CAPM is not. True False b. It is possible that the CAPM is valid and the APT is not. True False
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT