In: Statistics and Probability
Forecasting labour costs is a key aspect of hotel revenue management that enables hoteliers to appropriately allocate hotel resources and fix pricing strategies. Mary, the President of Hellenic Hoteliers Federation (HHF) is interested in investigating how labour costs (variable L_COST) relate to the number of rooms in a hotel (variable Total_Rooms). Suppose that HHF has hired you as a business analyst to develop a linear model to predict hotel labour costs based on the total number of rooms per hotel using the data provided. 3.1 Use the least squares method to estimate the regression coefficients b0 and b1 3.2 State the regression equation 3.3 Plot on the same graph, the scatter diagram and the regression line 3.4 Give the interpretation of the regression coefficients b0 and b1 as well as the result of the t-test on the individual variables (assume a significance level of 5%) 3.5 Determine the correlation coefficient of the two variables and provide an interpretation of its meaning in the context of this problem 3.6 Check statistically, at the 0.05 level of significance whether there is any evidence of a linear relationship between labour cost and total number of rooms per hotel
TR=TOTAL ROOMS, L COST =LABOUR COST
TR L_COST Turnover_per_Room
412 2,165,000
21,519.42
313 2,214,985
21,755.04
265 1,393,550
17,937.91
204 2,460,634
37,400.05
172 1,151,600
31,824.30
133 801,469 19,444.46
127 1,072,000
22,551.18
322 1,608,013
18,205.04
241 793,009 8,793.00
172 1,383,854
25,114.16
121 494,566
14,095.35
70 437,684
22,231.59
65 83,000 5,953.85
93 626,000
18,150.99
75 37,735
3,871.67
69 256,658
11,071.70
66 230,000
8,030.30
54 200,000
10,185.19
68 199,000
57 11,720
2,982.46
38 59,200
6,342.11
27 130,000
25,185.19
47 255,020
18,223.26
32 3,500 1,000.00
27 20,906 2,384.85
48 284,569
14,264.58
39 107,447
10,478.26
35 64,702
10,811.29
23 6,500 3,478.26
25 156,316
22,231.56
10 15,950
8,150.00
18 722,069
81,556.71
17 6,121 2,151.88
29 30,000
4,068.97
21 5,700 4,142.86
23 50,237
5,113.83
15 19,670
10,037.87
8 7,888 4,849.25
20 3,750.00
11 1,753.91
15 3,500 2,666.67
18 112,181
34,260.90
23
10 30,000 12,000.00
26 3,575 3,001.81
306 2,074,000
19,803.92
240 1,312,601
15,823.58
330 434,237
4,361.65
139 495,000
17,050.36
353 1,511,457
15,370.22
324 1,800,000
15,432.10
276 2,050,000
22,101.45
221 623,117
9,199.82
200 796,026
18,158.06
117 360,000
11,649.57
170 538,848
10,294.08
122 568,536
17,510.12
57 300,000
15,614.04
62 249,205
9,623.61
98 150,000
6,326.53
75 220,000
6,666.67
62 50,302
2,058.19
50 517,729
20,000.00
27 51,000
16,666.67
44 75,704
7,118.52
33 271,724
40,499.76
25 118,049
9,664.80
42
30 40,000
4,833.33
44 522.73
10 10,000
7,300.00
18 10,000
5,555.56
18 1,338.22
73 70,000
4,958.90
21 12,000
6,904.76
22 20,000
3,636.36
25 36,277
1,489.72
25 36,277
1,489.72
31 10,450
2,348.39
16 14,300
5,000.00
15 4,296
732.00
12 1,083.33
11 2,000.00
16 379,498
22 1,520 673.36
12 45,000
58,333.33
34 96,619
18,817.53
37 270,000
21,621.62
25 60,000 10,000.00
10 12,500 9,000.00
270 1,934,820
27,977.57
261 3,000,000
36,781.61
219 1,675,995
17,559.77
280 903,000 15,907.14
378 2,429,367
16,666.67
181 1,143,850
22,352.93
166 900,000 20,180.72
119 600,000
31,932.77
174 2,500,000
32,628.43
124 1,103,939
17,559.77
112 363,825 8,054.72
227 1,538,000
16,173.81
161 1,370,968
23,161.53
216 1,339,903
12,503.53
102 173,481
6,795.40
96 210,000
15,833.33
97 441,737
11,759.43
56 96,000
8,000.00
72 177,833
7,501.82
62 252,390
25,266.45
78 377,182
17,409.35
74 111,000
9,891.89
33 238,000
23,848.48
30 45,000
5,919.30
39 50,000
3,846.15
32 40,000
6,250.00
25 61,766
4,237.28
41 166,903
25,266.46
24 116,056
17,409.33
49 41,000
5,102.04
43 195,821
11,759.42
9
20 96,713
17,409.35
32 6,500
2,953.13
14 5,500
2,500.00
14 4,000
4,285.71
13 15,000
2,307.69
13 9,500
1,538.46
53 48,200
3,528.30
11 3,000
10,909.09
16 27,084
3,652.44
21 30,000
2,380.95
21 20,000
2,380.95
46 43,549
1,314.04
21 10,000
952.38
In order to solve this question I used R software.
R codes and output:
First we need to delete the observation with missing values.
> room=scan('clipboard');room
Read 126 items
[1] 412 313 265 204 172 133 127 322 241 172 121 70 65 93 75 69 66
54
[19] 68 57 38 27 47 32 27 48 39 35 23 25 10 18 17 29 21 23
[37] 15 8 15 18 10 26 306 240 330 139 353 324 276 221 200 117 170
122
[55] 57 62 98 75 62 50 27 44 33 25 30 10 18 73 21 22 25 25
[73] 31 16 15 16 22 12 34 37 25 10 270 261 219 280 378 181 166
119
[91] 174 124 112 227 161 216 102 96 97 56 72 62 78 74 33 30 39
32
[109] 25 41 24 49 43 20 32 14 14 13 13 53 11 16 21 21 46 21
> cost=scan('clipboard');cost
Read 126 items
[1] 2165.000 2214.985 1393.550 2460.634 1151.600 801.469 1072.000
1608.013
[9] 793.009 1383.854 494.566 437.684 83.000 626.000 37.735
256.658
[17] 230.000 200.000 199.000 11.720 59.200 130.000 255.020
3.500
[25] 20.906 284.569 107.447 64.702 6.500 156.316 15.950
722.069
[33] 6.121 30.000 5.700 50.237 19.670 7.888 3.500 112.181
[41] 30.000 3.575 2074.000 1312.601 434.237 495.000 1511.457
1800.000
[49] 2050.000 623.117 796.026 360.000 538.848 568.536 300.000
249.205
[57] 150.000 220.000 50.302 517.729 51.000 75.704 271.724
118.049
[65] 40.000 10.000 10.000 70.000 12.000 20.000 36.277 36.277
[73] 10.450 14.300 4.296 379.498 1.520 45.000 96.619 270.000
[81] 60.000 12.500 1934.820 3000.000 1675.995 903.000 2429.367
1143.850
[89] 900.000 600.000 2500.000 1103.939 363.825 1538.000 1370.968
1339.903
[97] 173.481 210.000 441.737 96.000 177.833 252.390 377.182
111.000
[105] 238.000 45.000 50.000 40.000 61.766 166.903 116.056
41.000
[113] 195.821 96.713 6.500 5.500 4.000 15.000 9.500 48.200
[121] 3.000 27.084 30.000 20.000 43.549 10.000
> fit=lm(cost~room)
> summary(fit)
Call:
lm(formula = cost ~ room)
Residuals:
Min 1Q Median 3Q Max
-1485.63 -103.31 -24.63 56.92 1528.86
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -87.050 41.885 -2.078 0.0397 *
room 6.082 0.315 19.307 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 340.4 on 124 degrees of freedom
Multiple R-squared: 0.7504, Adjusted R-squared: 0.7484
F-statistic: 372.8 on 1 and 124 DF, p-value: < 2.2e-16
> plot(room,cost)
> abline(fit)
> cor(room,cost)
[1] 0.8662512
Que.1
Regression coefficient b0 = -87.050
b1 = 6.082
Que.2
Regression equation:
Labour cost = -87.050 + 6.082 Total rooms
Que.3
Scatter plot:
Que.4
Interpretation of b1 :
When number of rooms in the hotel are increased by 1 then labour cost increased by 6.082 units.
Interpretation bo :
When a hotel have zero room then labour cost is -87.050
The value of individual t test for b0 is -2.078 and p-value is 0.0397 which is less than 0.05, hence b0 is statistically significant.
The value of individual t test for b1 is 19.307 and p-value is 0.0000 which is less than 0.05, hence b1 is statistically significant.
Que.5
The correlation coefficient between total rooms per hotel and labour cost is 0.8663. Which is high degree positive correlation. Which indicates that if we increase number of room per hotel then labour cost also increases and voice-a-versa.