In: Statistics and Probability
The mean price for used cars is $10,388. A manager of a Kansas City used car dealership reviewed a sample of 50 recent used car sales at the dealership in an attempt to determine whether the population mean price for used cars at this particular dealership differed from the national mean. The prices for the sample of 50 cars are contained in the Excel Online file below. Construct a spreadsheet to answer the following questions.
a. Formulate the hypotheses that can be used to determine whether a difference exists in the mean price for used cars at the dealership.
_________<>≤≥=≠
_________<>≤≥=≠
b. What are the test statistic and the -value? Do not round intermediate calculations.
(to 3 decimals) | |
-value | (to 4 decimals) |
c. At , what is your conclusion?
_________RejectFail to reject the null hypothesis. We have _________insufficientsufficient evidence to conclude that the population mean price at this dealership differs from the national mean price of $10,388.
Sale Price |
7578 |
7906 |
6681 |
7582 |
8961 |
6341 |
9960 |
7651 |
11516 |
11561 |
12434 |
7403 |
9519 |
9233 |
8371 |
10637 |
6517 |
8497 |
13000 |
11777 |
6340 |
11165 |
11495 |
13010 |
6708 |
7387 |
12805 |
9800 |
10479 |
7422 |
9384 |
8591 |
9989 |
9603 |
13181 |
11862 |
7767 |
8958 |
7402 |
12143 |
7115 |
11482 |
12807 |
8663 |
9603 |
10203 |
9628 |
9776 |
12420 |
7246 |
Sample Size 50
Hypothesized Mean 10388
Level of Significance 0.02
Values ( X ) | Σ ( Xi- X̅ )2 | |
7578 | 3893439.312 | |
7906 | 2706617.232 | |
6681 | 8237933.232 | |
7582 | 3877669.872 | |
8961 | 348312.4324 | |
6341 | 10305255.63 | |
9960 | 167133.7924 | |
7651 | 3610684.032 | |
11516 | 3860517.632 | |
11561 | 4039376.432 | |
12434 | 8310651.152 | |
7403 | 4614677.312 | |
9519.0 | 1035.5524 | |
9233 | 101238.5124 | |
8371 | 1392824.832 | |
10637 | 1179005.072 | |
6517 | 9206248.272 | |
8497 | 1111295.472 | |
13000 | 11894359.39 | |
11777 | 4954274.672 | |
6340 | 10311676.99 | |
11165 | 2604414.992 | |
11495 | 3778436.192 | |
13010 | 11963435.79 | |
6708 | 8083672.512 | |
7387 | 4683675.072 | |
12805 | 10587344.59 | |
9800 | 61911.3924 | |
10479 | 860849.9524 | |
7422 | 4533407.472 | |
9384 | 27949.1524 | |
8591 | 921945.6324 | |
9989 | 191686.3524 | |
9603 | 2685.3124 | |
13181 | 13175593.23 | |
11862 | 5339889.072 | |
7767 | 3183298.272 | |
8958 | 351862.5124 | |
7402 | 4618974.672 | |
12143 | 6717530.912 | |
7115 | 5934972.992 | |
11482 | 3728065.872 | |
12807 | 10600363.87 | |
8663 | 788863.7124 | |
9603 | 2685.3124 | |
10203 | 424869.3124 | |
9628 | 5901.3124 | |
9776 | 50544.0324 | |
12420 | 8230128.192 | |
7246 | 5313854.832 | |
Total | 477559 | 210893039.4 |
Mean X̅ = Σ Xi / n
X̅ = 477559 / 50 = 9551.18
Sample Standard deviation SX = √ ( (Xi - X̅
)2 / n - 1 )
SX = √ ( 210893039.38 / 50 -1 ) = 2074.5938
To Test :-
H0 :- µ = 10388
H1 :- µ ≠ 10388
Part b)
Test Statistic :-
t = ( X̅ - µ ) / ( S / √(n))
t = ( 9551.18 - 10388 ) / ( 2074.5938 / √(50) )
t = -2.8522 ≈ - 2.852
Test Criteria :-
Reject null hypothesis if | t | > t(α/2, n-1)
Critical value t(α/2, n-1) = t(0.02 /2, 50-1) = 2.405
| t | > t(α/2, n-1) = 2.8522 > 2.405
Result :- Reject null hypothesis
Decision based on P value
P - value = P ( t > 2.8522 ) = 0.0063
Reject null hypothesis if P value < α = 0.02 level of
significance
P - value = 0.0063 < 0.02 ,hence we reject null hypothesis
Conclusion :- Reject null hypothesis
Part c)
Reject the null hypothesis. We have sufficient evidence to conclude that the population mean price at this dealership differs from the national mean price of $10,388.