In: Statistics and Probability
The following times series shows the demand for a particular product over the past 10 months.
Month |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
Value |
324 |
311 |
303 |
314 |
323 |
313 |
302 |
315 |
312 |
326 |
a. Use α = 0.2 to compute the exponential smoothing values for the time series. Compute MSE and a forecast for month 11.
b. Develop a three-week moving average for this time series. Compute MSE and a forecast for month 11.
c. Use α = 0.2 to compute the exponential smoothing values for the time series. Compute MSE and a forecast for month 11.
d. Compare the three-week moving average forecast with the exponential smoothing forecast using α = 0.2. Which appears to provide the better forecast based on MSE? Explain.d.
Answer:
a) Use α = 0.2 to compute the exponential smoothing values for the time series. Compute MSE, MAPE and a forecast for month 11.
For exponential smoothing we will assume the first month forecast value is same as actual.
For next forecast values we hhvae the formula
Eg: For month 4 we have F4 = A3 * 0.2 + F3*0.8
Month | Value | Forecast |
1 | 324 | 324 |
2 | 311 | 324.000 |
3 | 303 | 321.400 |
4 | 314 | 317.720 |
5 | 323 | 316.976 |
6 | 313 | 318.181 |
7 | 302 | 317.145 |
8 | 315 | 314.116 |
9 | 312 | 314.293 |
10 | 326 | 313.834 |
11 | 316.267 |
MSE = mean squared error
where the error = actual - forecast
So we square the error.
MSE = ......We divide 9 because we have 9 pirs of the actual and forecast.
Month | Value | Forecast | Error | Error^2 |
1 | 324 | 324 | ||
2 | 311 | 324.000 | -13.000 | 169.000 |
3 | 303 | 321.400 | -18.400 | 338.560 |
4 | 314 | 317.720 | -3.720 | 13.838 |
5 | 323 | 316.976 | 6.024 | 36.289 |
6 | 313 | 318.181 | -5.181 | 26.841 |
7 | 302 | 317.145 | -15.145 | 229.360 |
8 | 315 | 314.116 | 0.884 | 0.782 |
9 | 312 | 314.293 | -2.293 | 5.256 |
10 | 326 | 313.834 | 12.166 | 148.010 |
11 | 316.267 | |||
Total | 967.936 | |||
Mean | 107.548 |
MAPE = mean absolute percentage error
Where percentage error = Absolute error / actual
MAPE =
Month | Value | Forecast | Error | Abs error | APE |
1 | 324 | 324 | |||
2 | 311 | 324.000 | -13.000 | 13 | 4.2% |
3 | 303 | 321.400 | -18.400 | 18.4 | 6.1% |
4 | 314 | 317.720 | -3.720 | 3.72 | 1.2% |
5 | 323 | 316.976 | 6.024 | 6.024 | 1.9% |
6 | 313 | 318.181 | -5.181 | 5.181 | 1.7% |
7 | 302 | 317.145 | -15.145 | 15.145 | 5.0% |
8 | 315 | 314.116 | 0.884 | 0.884 | 0.3% |
9 | 312 | 314.293 | -2.293 | 2.293 | 0.7% |
10 | 326 | 313.834 | 12.166 | 12.166 | 3.7% |
11 | 316.267 | ||||
Total | 24.7% | ||||
Mean | 2.7% |
b) Calculate MSE and MAPE for three month moving average ?
Moving average is where we first take the total of previous 'n' periods and then divide by 'n'.
So Eg: we have F4 = (sum (A1 + A2+ A3)/ 3
Month | Value | Moving Total | Forecast | Error | Error^2 | Abs error | APE |
1 | 324 | ||||||
2 | 311 | ||||||
3 | 303 | ||||||
4 | 314 | 938 | 312.667 | 1.333 | 1.778 | 1.333 | 0.4% |
5 | 323 | 928 | 309.333 | 13.667 | 186.778 | 13.667 | 4.2% |
6 | 313 | 940 | 313.333 | -0.333 | 0.111 | 0.333 | 0.1% |
7 | 302 | 950 | 316.667 | -14.667 | 215.111 | 14.667 | 4.9% |
8 | 315 | 938 | 312.667 | 2.333 | 5.444 | 2.333 | 0.7% |
9 | 312 | 930 | 310.000 | 2.000 | 4.000 | 2.000 | 0.6% |
10 | 326 | 929 | 309.667 | 16.333 | 266.778 | 16.333 | 5.0% |
11 | 953 | 317.667 | |||||
Total | 680.000 | 16.0% | |||||
Mean | 97.143 | 2.3% |
Here for mean we divide by 7 becuase we have 7 pairs of actual and forecast value.
c)
Use α = 0.2 to compute the exponential smoothing values for the time series. Compute MSE, MAPE and a forecast for month 11.
For exponential smoothing we will assume the first month forecast value is same as actual.
For next forecast values we hhvae the formula
Eg: For month 4 we have F4 = A3 * 0.2 + F3*0.8
Month | Value | Forecast |
1 | 324 | 324 |
2 | 311 | 324.000 |
3 | 303 | 321.400 |
4 | 314 | 317.720 |
5 | 323 | 316.976 |
6 | 313 | 318.181 |
7 | 302 | 317.145 |
8 | 315 | 314.116 |
9 | 312 | 314.293 |
10 | 326 | 313.834 |
11 | 316.267 |
MSE = mean squared error
where the error = actual - forecast
So we square the error.
MSE = ......We divide 9 because we have 9 pirs of the actual and forecast.
Month | Value | Forecast | Error | Error^2 |
1 | 324 | 324 | ||
2 | 311 | 324.000 | -13.000 | 169.000 |
3 | 303 | 321.400 | -18.400 | 338.560 |
4 | 314 | 317.720 | -3.720 | 13.838 |
5 | 323 | 316.976 | 6.024 | 36.289 |
6 | 313 | 318.181 | -5.181 | 26.841 |
7 | 302 | 317.145 | -15.145 | 229.360 |
8 | 315 | 314.116 | 0.884 | 0.782 |
9 | 312 | 314.293 | -2.293 | 5.256 |
10 | 326 | 313.834 | 12.166 | 148.010 |
11 | 316.267 | |||
Total | 967.936 | |||
Mean | 107.548 |
MAPE = mean absolute percentage error
Where percentage error = Absolute error / actual
MAPE =
Month | Value | Forecast | Error | Abs error | APE |
1 | 324 | 324 | |||
2 | 311 | 324.000 | -13.000 | 13 | 4.2% |
3 | 303 | 321.400 | -18.400 | 18.4 | 6.1% |
4 | 314 | 317.720 | -3.720 | 3.72 | 1.2% |
5 | 323 | 316.976 | 6.024 | 6.024 | 1.9% |
6 | 313 | 318.181 | -5.181 | 5.181 | 1.7% |
7 | 302 | 317.145 | -15.145 | 15.145 | 5.0% |
8 | 315 | 314.116 | 0.884 | 0.884 | 0.3% |
9 | 312 | 314.293 | -2.293 | 2.293 | 0.7% |
10 | 326 | 313.834 | 12.166 | 12.166 | 3.7% |
11 | 316.267 | ||||
Total | 24.7% | ||||
Mean | 2.7% |
d) Compare the three-month moving average forecast with the exponential smoothing forecast using α = 0.2. Which appears to provide the better forecast based on MSE?
The error represents how far our forecast is away from the actual value. So if it is greater then the forecast is not very accurate.
Since MSE expo > moving avg
Better forecast is provided by the moving average.
NOTE:: I HOPE THIS ANSWER IS HELPFULL TO YOU......**PLEASE SUPPORT ME WITH YOUR RATING......
**PLEASE GIVE ME "LIKE".....ITS VERY IMPORTANT FOR,ME......PLEASE SUPPORT ME .......THANK YOU