In: Physics
A placekicker must kick a football from a point 36.0 m (about 40 yards) from the goal. Half the crowd hopes the ball will clear the crossbar, which is 3.05 m high. When kicked, the ball leaves the ground with a speed of 23.4 m/s at an angle of 48.0° to the horizontal.
(a) By how much does the ball clear or fall short of clearing
the crossbar? (Enter a negative answer if it falls short.)
m
(b) Does the ball approach the crossbar while still rising or while
falling?
rising or falling
---------------------------------------...
Let B = angle above horizontal for the kick.
v0 = 23.4 m/s
v sub y0 = ( v0 ) ( sin B ) = ( 23.4 ) ( sin 48.0 ) = 17.389
m/s
v sub x0 = ( v0 ) ( cos B ) = ( 23.4 ) ( cos 48.0 ) = 15.657
m/s
Consider travel in y direction ( vertical direction ) :
---------------------------------------...
a sub y = d v sub y / dt = -g
d ( v sub y ) = ( -g ) dt
v sub y = v sub y0 - gt
dy/dt = v sub y = v sub y0 - gt
dy = [ v sub y0 - gt ] dt
y = ( v sub y0 ) ( t ) - ( g/2 ) ( t^2 )
Let t* be time for: y = y* = ymax and v sub y = 0.0 :
---------------------------------------...
t* = v sub y0 / g
t* = v sub y0 / g
t* = 17.389 / 9.807 = 1.773 s
y* = ( v sub y0 ) ( t* ) - ( g/2 ) ( t* )^2
y* = ( 17.389 ) ( 1.773 ) - ( 9.807 / 2 ) ( 1.773 )^2
y* = 30.830697 m - 15.4142 m = 15.4164 m
total flight time = t** = ( 2 ) ( t* ) = ( 2 ) ( 1.773 ) = 3.546
s
Consider the horizontal direction :
---------------------------------------...
v sub x = v sub x0 = 15.657 m / s
xf = ( v sub x0 ) ( tf )
tf = xf / v sub x0 = ( 36.0 m ) / ( 15.657 m /s ) = 2.299 s
We now need yf corresponding to t = tf :
---------------------------------------...
yf = ( v sub y0 ) ( tf ) - ( g / 2 ) ( tf )^2
yf = ( 17.389 ) ( 2.299 ) - ( 9.807 / 2 ) ( 2.299 )^2
yf = 39.977 - 25.91696 = 14.0603 m
yf - ycb = 14.0603 - 3.05 = 11.0103 m <-------------
The field goal try is successful.