Question

In: Chemistry

A materials scientist has created an alloy containing aluminum, copper, and zinc, and wants to determine...

A materials scientist has created an alloy containing aluminum, copper, and zinc, and wants to determine the percent composition of the alloy. The scientist takes a 10.652 g sample of the alloy and reacts it with concentrated HCl. The reaction converts all of the aluminum and zinc in the alloy to aluminum chloride and zinc chloride in addition to producing hydrogen gas. The copper does not react with the HCl. Upon completion of the reaction, a total of 8.94 L of hydrogen gas was collected at a pressure of 726 torr and a temperature of 27.0 °C. Additionally, 2.165 g of unreacted copper is recovered. Calculate the mass of hydrogen gas formed from the reaction.__g Calculate the mass of aluminum in the alloy sample. __g What is the mass percent composition of the alloy? __% Cu __%Al __%Zn

Solutions

Expert Solution

Zn + 2HCl ---> ZnCl2 + H2

Al + 3HCl --> AlCl3 + 3/2 H2

H2 moles got   we calculate form PV = nRT equation where P = 726/760 atm = 0.955 atm

0.955 x 8.94 n x 0.08206 x 300       ( T = 27C = 27+273 = 300 K)

n = 0.3468 = moles of H2

mass of H2 produced = moles of H2 x molar mass of H2 = 0.3468 x 2 = 0.6936 g

copper mass = 2.165 g ,

hence Al + zinc mass = 10.652-2.165 = 8.487 g

let Al moles be n(Al) , zinc moles be n(Zn)

H2 moles produced = 3/2 n(Al) + 2n(Zn) = 0.3468 ............(1)

mass of AL = moles of AL x molar mass of Al = 27n(Al)

mass of Zn = 65.38 n(Zn)

mass of alloy without copper is

27n(Al) + 65.38n(Zn) = 8.487 ....(2)

by (1) ( 2) , n(Al) = 0.129335 , Zn moles = 0.0764

Al mass = 0.129335 x 27 = 3.49 g , Zn mass= 0.0764 x 65.38 = 4.955 g

now mass of AL = ( AL mass x 100) / ( alloy mass) = ( 100 x 3.49/10.652) = 32.76 %

Zn % = ( 100 x 4.955/10.652) = 46.5 %

Cu % = 100-46.5-32.76 = 20.74 %


Related Solutions

A materials scientist has created an alloy containing aluminum, copper, and zinc, and wants to determine...
A materials scientist has created an alloy containing aluminum, copper, and zinc, and wants to determine the percent composition of the alloy. The scientist takes a 11.470 g sample of the alloy and reacts it with concentrated HCl. The reaction converts all of the aluminum and zinc in the alloy to aluminum chloride and zinc chloride in addition to producing hydrogen gas. The copper does not react with the HCl. Upon completion of the reaction, a total of 9.77 L...
A materials scientist has created an alloy containing aluminum, copper, and zinc, and wants to determine...
A materials scientist has created an alloy containing aluminum, copper, and zinc, and wants to determine the percent composition of the alloy. The scientist takes a 11.470 g sample of the alloy and reacts it with concentrated HCl. The reaction converts all of the aluminum and zinc in the alloy to aluminum chloride and zinc chloride in addition to producing hydrogen gas. The copper does not react with the HCl. Upon completion of the reaction, a total of 9.77 L...
A materials scientist has created an alloy containing aluminum, copper, and zinc, and wants to determine...
A materials scientist has created an alloy containing aluminum, copper, and zinc, and wants to determine the percent composition of the alloy. The scientist takes a 12.232 g sample of the alloy and reacts it with concentrated HCl. The reaction converts all of the aluminum and zinc in the alloy to aluminum chloride and zinc chloride in addition to producing hydrogen gas. The copper does not react with the HCl. Upon completion of the reaction, a total of 10.1 L...
Brass is an alloy made from copper and zinc. A 0.66 kg brass sample at 98.6...
Brass is an alloy made from copper and zinc. A 0.66 kg brass sample at 98.6 °C is dropped into 2.33 L of water at 4.6 °C. If the equilibrium temperature is 7.0 °C, what is the specific heat capacity of brass? Express your answer as J/kg°C
For an alloy that consists of 74.9 g copper, 108.0 g zinc, and 7.3 g lead,...
For an alloy that consists of 74.9 g copper, 108.0 g zinc, and 7.3 g lead, what are the concentrations of (a) Cu, (b) Zn, and (c) Pb in weight percent? The atomic weights of Cu, Zn, and Pb are 63.54, 65.39, and 207.2 g/mol, respectively.
What is an alloy of copper and zinc called? a) Bronze b) German silver c) Brass d) Solder
An alloy of copper and zinc is called..... a) Bronze b) German silver c) Brass d) Solder
A 0.4423 g sample of pewter, containing tin, lead, copper, and zinc, was dissolved in acid....
A 0.4423 g sample of pewter, containing tin, lead, copper, and zinc, was dissolved in acid. Tin was precipitated as SnO2·4H2O and removed by filtration. The resulting filtrate and washings were diluted to a total volume of 200.0 mL. A 15.00 mL aliquot of this solution was buffered, and titration of the lead, copper, and zinc in solution required 35.87 mL of 0.001481 M EDTA. Thiosulfate was used to mask the copper in a second 20.00 mL aliquot. Titration of...
A 0.4640 g sample of pewter, containing tin, lead, copper, and zinc, was dissolved in acid....
A 0.4640 g sample of pewter, containing tin, lead, copper, and zinc, was dissolved in acid. Tin was precipitated as SnO2·4H2O and removed by filtration. The resulting filtrate and washings were diluted to a total volume of 200.0 mL. A 15.00 mL aliquot of this solution was buffered, and titration of the lead, copper, and zinc in solution required 34.88 mL of 0.001523 M EDTA. Thiosulfate was used to mask the copper in a second 20.00 mL aliquot. Titration of...
A 0.4809 g sample of pewter, containing tin, lead, copper, and zinc, was dissolved in acid....
A 0.4809 g sample of pewter, containing tin, lead, copper, and zinc, was dissolved in acid. Tin was precipitated as SnO2·4H2O and removed by filtration. The resulting filtrate and washings were diluted to a total volume of 200.0 mL. A 20.00 mL aliquot of this solution was buffered, and titration of the lead, copper, and zinc in solution required 34.79 mL of 0.001492 M EDTA. Thiosulfate was used to mask the copper in a second 25.00 mL aliquot. Titration of...
A 0.4775 g sample of pewter, containing tin, lead, copper, and zinc, was dissolved in acid....
A 0.4775 g sample of pewter, containing tin, lead, copper, and zinc, was dissolved in acid. Tin was precipitated as SnO2·4H2O and removed by filtration. The resulting filtrate and washings were diluted to a total volume of 200.0 mL. A 20.00 mL aliquot of this solution was buffered, and titration of the lead, copper, and zinc in solution required 35.98 mL of 0.001455 M EDTA. Thiosulfate was used to mask the copper in a second 25.00 mL aliquot. Titration of...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT