Question

In: Physics

Jason uses a lens with focal length of 11.0 cm as a magnifier by holding it...

Jason uses a lens with focal length of 11.0 cm as a magnifier by holding it right up to his eye. He is observing an object that is 9.0 cm from the lens.

What is the angular magnification of the lens used this way if Jason's near-point distance is 25 cm?

Solutions

Expert Solution

ANS : From    1/f = 1/ v - 1/u

          Given : f = 11 cm . u = 9 cm , v = ?

                      1 / 11 = 1 / v - 1 / 9

                      1 / 11 + 1 / 9 = 1 / v

                       20 / 99    = 1/ v

                        99 / 20 = v

                         v = 4. 95 cm

             The angular magnification of the lens used this way if Jason's near-point distance is 25

              Ma = 25 / f + 1

              Ma = 25 / 11 + 1

              Ma = 2. 2727 +1

             Ma = 3. 2727


Related Solutions

An object is 15.2 cm to the left of a lens with a focal length of...
An object is 15.2 cm to the left of a lens with a focal length of 10.2 cm. A second lens of focal length 11.8 cm is 39.27 cm to the right of the first lens. The height of the object of is 2.1 cm. What is the location of the final image with respect to the second lens? What is the height of the image?
Lens 1, in a two-lens system, is converging with a focal length +15.0 cm and Lens...
Lens 1, in a two-lens system, is converging with a focal length +15.0 cm and Lens 2 is also converging, with a focal length of +5.0 cm. An object is placed 40.0 cm to the left of Lens 1, as shown. If the two lenses are separated by 30.0 cm, where is the final image in relation to Lens 2?
A diverging lens of focal length -12.5 cm is placed 40.0 cm from a converging lens...
A diverging lens of focal length -12.5 cm is placed 40.0 cm from a converging lens of unknown focal length.  A 15.2 cm tall erect object is placed 25.3 cm in front of the diverging lens which is to produce an image on a screen that is twice the size of the original object but inverted. A) Where should the screen be located to produce a clear image? Give the distance from the converging lens to the screen in cm. B)...
A converging lens of focal length 19.3 cm is separated by 49.3 cm from a converging...
A converging lens of focal length 19.3 cm is separated by 49.3 cm from a converging lens of the focal length 4.53 cm. Find the position of the final image with respect to the second lens of an object placed 38.6 cm in front the first lens. Answer in units of cm. 021 (part 2 of 3) 10.0 points If the height of the object is 1.7 cm, what is the height of the final image? Answer in units of...
A lens of focal length f1 = +20 cm has an object positioned 50 cm in...
A lens of focal length f1 = +20 cm has an object positioned 50 cm in front of it. A second lens of focal length f2= -15 cm is located 10 cm behind the first lens. a) Determine the two image positions for this combination of lenses. b) Is each image real or virtual, upright or inverted, and magnified or demagnified?
Consider a double convex lens with a focal length of 35 cm. If a marble is...
Consider a double convex lens with a focal length of 35 cm. If a marble is placed 85 cm from the lens, what is the image distance? Enter your answer in cm.
A thin lens has a focal length of 25.0 cm. (a) Find the location of the...
A thin lens has a focal length of 25.0 cm. (a) Find the location of the image (in cm from the lens) formed by the lens when an object is placed p1 = 27.6 cm in front of the lens. (Enter a negative distance if the image is in front of the lens.) Choose the correct description of the image. (Select all that apply.) virtual upright inverted reduced real enlarged (b) Find the location of the image (in cm from...
A converging lens has a focal length of 15 cm. If an object is placed at...
A converging lens has a focal length of 15 cm. If an object is placed at a distance of 5 cm from the lens, a. find the image position d i = _____ cm (include sign +/-) b. find the magnification M = _____(include sign +/-) c. characterize the resulting image. ________(real or virtual) ________(enlarged or reduced) ________(upright or inverted)
a) The focal length of a converging lens is 35 cm. An object is placed 100...
a) The focal length of a converging lens is 35 cm. An object is placed 100 cm in front of the lens. Describe the image. b) The focal length of a converging lens is 35 cm. An object is placed 30 cm in front of the lens. Describe the image. c) The focal length of a diverging lens is 35 cm. An object is placed 100 cm in front of the lens. Describe the image. d) The focal length of...
An object is placed 49 cm to the left of a converging lens of focal length...
An object is placed 49 cm to the left of a converging lens of focal length 21 cm. A diverging lens of focal length − 29 cm is located 10.3 cm to the right of the first lens. (Consider the lenses as thin lenses). a) Where is the final image with respect to the second lens? b)What is the linear magnification of the final image?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT