In: Finance
]Using either a Black Scholes or Binomial Tree option calculator on the internet, what is the value of a 6 month put on the money (current price) Tesla Stock if we use volatility of .50, no dividend, and a risk free rate of 1%?
Tesla Stock Price = S = $746.36
Let the Strike price be X = $800 (in the money put option)
| S = Current Stock Price = | 746.36 |
| t = time until option expiration(years) = 6/12 = | 0.5000 |
| X = Option Strike Price = | 800 |
| r = risk free rate(annual) = 1% = 1/100 = | 0.01 |
| s = standard deviation(annual) = | 0.50 |
| N = cumulative standard normal distribution | |
| d1 | = {ln (S/K) + (r +s^2/2)t}/s√t |
| = {ln (746.36/800) + (0.01 + 0.5^2/2)*0.5}/0.5*√0.5 | |
| = -0.0054 | |
| d2 | = d1 - s√t |
| = -0.0054 - 0.5√0.5 | |
| = -0.3590 | |
| Using z tables, | |
| N(d1) = | 0.4978 |
| N(d2) = | 0.3598 |
| C = Call Premium = | =SN(d1) - N(d2)Ke^(-rt) |
| = 746.36*0.4978 - 0.3598*800e^(-0.01*0.5) | |
| = 85.1336 | |
| N(-d1) = | 0.5022 |
| N(-d2) = | 0.6402 |
| P = Put Premium = | =N(-d2)Ke^(-rt) - SN(-d1) |
| = 0.6402*800e^(-0.01*0.5) - 746.36*0.5022 | |
| = 134.7836 |
Hence, value of put option = $134.78