Question

In: Chemistry

Show how it is possible to get the other state functions, G, A, and H, from...

Show how it is possible to get the other state functions, G, A, and H, from just S and U.

Solutions

Expert Solution

at constant volume

dU = dq + dw(1st law)

dS = dq/T(2nd law)

T is known dS is known so dq is known from 2nd law

and from first law dw is also known because dU and dq are known

At constant volume, dV = 0, and we have

dU <= TdS

or

dU - TdS <= 0

Since T and V are held constant, we can write this expression as

d(U - TS) <= 0

Thus, we can define a new state function, A = U - TS.

dA <= 0

dH = dU + PdV + VdP = TdS + VdP

dG = dA + PdV + VdP = -SdT + VdP


Related Solutions

If f and g are both differentiable functions. If h = f g, then h'(2) is: ___________________
  If f and g are both differentiable functions. If h = f g, then h'(2) is: ___________________ Given the function: y=sin(4x)+e^-3x and dx/dt = 3 when x=0. Then dy/dt = ________________ when x=0. Let f(x) = ln (√x). The value of c in the interval (1,e) for which f(x) satisfies the Mean Value Theorem (i.e f'(c)= f(e)-f(1) / e-1 ) is: _________________________ Suppose f(x) is a piecewise function: f(x) = 3x^2 -11x-4, if x ≤ 4 and f(x) =...
4.- Show the solution: a.- Let G be a group, H a subgroup of G and...
4.- Show the solution: a.- Let G be a group, H a subgroup of G and a∈G. Prove that the coset aH has the same number of elements as H. b.- Prove that if G is a finite group and a∈G, then |a| divides |G|. Moreover, if |G| is prime then G is cyclic. c.- Prove that every group is isomorphic to a group of permutations. SUBJECT: Abstract Algebra (18,19,20)
(1) Let G be a group and H, K be subgroups of G. (a) Show that...
(1) Let G be a group and H, K be subgroups of G. (a) Show that if H is a normal subgroup, then HK = {xy|x ? H, y ? K} is a subgroup of G. (b) Show that if H and K are both normal subgroups, then HK is also a normal subgroup. (c) Give an example of subgroups H and K such that HK is not a subgroup of G.
a) State the Axioms of rational choice and show how they affect indifference curves where possible.
a) State the Axioms of rational choice and show how they affect indifference curves where possible.
Consider G = (Z12, +). Let H = {0, 3, 6, 9}. a. Show that H...
Consider G = (Z12, +). Let H = {0, 3, 6, 9}. a. Show that H is a subgroup of G. b. Find all the cosets of H in G and denote this set by G/H. [Note: If x ∈ G then H +12 [x]12 = {[h + x]12?? | [h]12 ∈ H} is the coset generated by x.] c. For H +12 [x]12, H +12 [y]12 ∈ G/H define (H+12[x]12)⊕(H+12[y]12) by(H+12 [x]12)⊕(H+12 [y]12)=H+12 [x+y]12. d. Show that ⊕ is...
show that if H is a p sylow subgroup of a finite group G then for...
show that if H is a p sylow subgroup of a finite group G then for an arbitrary x in G x^-1 H x is also a p sylow subgroup of G
In this question we study the recursively defined functions f, g and h given by the...
In this question we study the recursively defined functions f, g and h given by the following defining equations f(0) = −1 base case 0, f(1) = 0 base case 1, and f(n) = n · f(n − 1) + f(n − 2)^2 recursive case for n ≥ 2. and g(0, m, r, k) = m base case 0, and g(n, m, r, k) = g(n − 1, r,(k + 2)r + m^2 , k + 1) recursive case for...
In this question we study the recursively defined functions f, g and h given by the...
In this question we study the recursively defined functions f, g and h given by the following defining equations f(0) = −1 base case 0, f(1) = 0 base case 1, and f(n) = n · f(n − 1) + f(n − 2)^2 recursive case for n ≥ 2. and g(0, m, r, k) = m base case 0, and g(n, m, r, k) = g(n − 1, r,(k + 2)r + m^2 , k + 1) recursive case for...
Derive the three equations of state for one of the following: U, H, A, or G
Derive the three equations of state for one of the following: U, H, A, or G
3.2.1. Find the Fourier series of the following functions: (g) | sin x | (h) x...
3.2.1. Find the Fourier series of the following functions: (g) | sin x | (h) x cos x.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT