In: Statistics and Probability
Female Health Data | Looking at the correlation matrix identify one good and one bad regression pair and conduct detailed regression analysis with all explanations similar to example from Ch 18 repeated below | |||||||||||||||||
Data>Data Analysis ToolBox>Correlation | Data>Data Analysis ToolBox> Regression | |||||||||||||||||
AGE | HT | WT | WAIST | PULSE | SYS | DIAS | CHOL | BMI | LEG | ELBOW | WRIST | ARM | ||||||
17 | 64.3 | 114.8 | 67.2 | 76 | 104 | 61 | 264 | 19.6 | 41.6 | 6 | 4.6 | 23.6 | ||||||
32 | 66.4 | 149.3 | 82.5 | 72 | 99 | 64 | 181 | 23.8 | 42.8 | 6.7 | 5.5 | 26.3 | ||||||
25 | 62.3 | 107.8 | 66.7 | 88 | 102 | 65 | 267 | 19.6 | 39 | 5.7 | 4.6 | 26.3 | ||||||
55 | 62.3 | 160.1 | 93 | 60 | 114 | 76 | 384 | 29.1 | 40.2 | 6.2 | 5 | 32.6 | ||||||
27 | 59.6 | 127.1 | 82.6 | 72 | 94 | 58 | 98 | 25.2 | 36.2 | 5.5 | 4.8 | 29.2 | ||||||
29 | 63.6 | 123.1 | 75.4 | 68 | 101 | 66 | 62 | 21.4 | 43.2 | 6 | 4.9 | 26.4 | ||||||
25 | 59.8 | 111.7 | 73.6 | 80 | 108 | 61 | 126 | 22 | 38.7 | 5.7 | 5.1 | 27.9 | ||||||
12 | 63.3 | 156.3 | 81.4 | 64 | 104 | 41 | 89 | 27.5 | 41 | 6.8 | 5.5 | 33 | ||||||
41 | 67.9 | 218.8 | 99.4 | 68 | 123 | 72 | 531 | 33.5 | 43.8 | 7.8 | 5.8 | 38.6 | ||||||
32 | 61.4 | 110.2 | 67.7 | 68 | 93 | 61 | 130 | 20.6 | 37.3 | 6.3 | 5 | 26.5 | ||||||
31 | 66.7 | 188.3 | 100.7 | 80 | 89 | 56 | 175 | 29.9 | 42.3 | 6.6 | 5.2 | 34.4 | ||||||
19 | 64.8 | 105.4 | 72.9 | 76 | 112 | 62 | 44 | 17.7 | 39.1 | 5.7 | 4.8 | 23.7 | ||||||
19 | 63.1 | 136.1 | 85 | 68 | 107 | 48 | 8 | 24 | 40.3 | 6.6 | 5.1 | 28.4 | ||||||
23 | 66.7 | 182.4 | 85.7 | 72 | 116 | 62 | 112 | 28.9 | 48.6 | 7.2 | 5.6 | 34 | ||||||
40 | 66.8 | 238.4 | 126 | 96 | 181 | 102 | 462 | 37.7 | 33.2 | 7 | 5.4 | 35.2 | ||||||
23 | 64.7 | 108.8 | 74.5 | 72 | 98 | 61 | 62 | 18.3 | 43.4 | 6.2 | 5.2 | 24.7 | ||||||
27 | 65.1 | 119 | 74.5 | 68 | 100 | 53 | 98 | 19.8 | 41.5 | 6.3 | 5.3 | 27 | ||||||
45 | 61.9 | 161.9 | 94 | 72 | 127 | 74 | 447 | 29.8 | 40 | 6.8 | 5 | 35 | ||||||
41 | 64.3 | 174.1 | 92.8 | 64 | 107 | 67 | 125 | 29.7 | 38.2 | 6.8 | 4.7 | 33.1 | ||||||
56 | 63.4 | 181.2 | 105.5 | 80 | 116 | 71 | 318 | 31.7 | 38.2 | 6.9 | 5.4 | 39.6 | ||||||
22 | 60.7 | 124.3 | 75.5 | 64 | 97 | 64 | 325 | 23.8 | 38.2 | 5.9 | 5 | 27 | ||||||
57 | 63.4 | 255.9 | 126.5 | 80 | 155 | 85 | 600 | 44.9 | 41 | 8 | 5.6 | 43.8 | ||||||
24 | 62.6 | 106.7 | 70 | 76 | 106 | 59 | 237 | 19.2 | 38.1 | 6.1 | 5 | 23.6 | ||||||
37 | 60.6 | 149.9 | 98 | 76 | 110 | 70 | 173 | 28.7 | 38 | 7 | 5.1 | 34.3 | ||||||
59 | 63.5 | 163.1 | 104.7 | 76 | 105 | 69 | 309 | 28.5 | 36 | 6.7 | 5.1 | 34.4 | ||||||
40 | 58.6 | 94.3 | 67.8 | 80 | 118 | 82 | 94 | 19.3 | 32.1 | 5.4 | 4.2 | 23.3 | ||||||
45 | 60.2 | 159.7 | 99.3 | 104 | 133 | 83 | 280 | 31 | 31.1 | 6.4 | 5.2 | 35.6 | ||||||
52 | 67.6 | 162.8 | 91.1 | 88 | 113 | 75 | 254 | 25.1 | 39.4 | 7.1 | 5.3 | 31.8 | ||||||
31 | 63.4 | 130 | 74.5 | 60 | 113 | 66 | 123 | 22.8 | 40.2 | 5.9 | 5.1 | 27 | ||||||
32 | 64.1 | 179.9 | 95.5 | 76 | 107 | 67 | 596 | 30.9 | 39.2 | 6.2 | 5 | 32.8 | ||||||
23 | 62.7 | 147.8 | 79.5 | 72 | 95 | 59 | 301 | 26.5 | 39 | 6.3 | 4.9 | 31 | ||||||
23 | 61.3 | 112.9 | 69.1 | 72 | 108 | 72 | 223 | 21.2 | 36.6 | 5.9 | 4.7 | 27 | ||||||
47 | 58.2 | 195.6 | 105.5 | 88 | 114 | 79 | 293 | 40.6 | 27 | 7.5 | 5.5 | 41.2 | ||||||
36 | 63.2 | 124.2 | 78.8 | 80 | 104 | 73 | 146 | 21.9 | 38.5 | 5.6 | 4.7 | 25.5 | ||||||
34 | 60.5 | 135 | 85.7 | 60 | 125 | 73 | 149 | 26 | 39.9 | 6.4 | 5.2 | 30.9 | ||||||
37 | 65 | 141.4 | 92.8 | 72 | 124 | 85 | 149 | 23.5 | 37.5 | 6.1 | 4.8 | 27.9 | ||||||
18 | 61.8 | 123.9 | 72.7 | 88 | 92 | 46 | 920 | 22.8 | 39.7 | 5.8 | 5 | 26.5 | ||||||
29 | 68 | 135.5 | 75.9 | 88 | 119 | 81 | 271 | 20.7 | 39 | 6.3 | 4.9 | 27.8 | ||||||
48 | 67 | 130.4 | 68.6 | 124 | 93 | 64 | 207 | 20.5 | 41.6 | 6 | 5.3 | 23 | ||||||
16 | 57 | 100.7 | 68.7 | 64 | 106 | 64 | 2 | 21.9 | 33.8 | 5.6 | 4.6 | 26.4 | ||||||
Using Excel
data -> data analysis -> correlation
we see the correlation between weight and BMI is 0.9392 , which is good regression
y = BMI and x =Weight
Using Excel
data -> data analysis -> regression
BMI^ = 2.8209 + 0.1562 WT
for bad regression
correlation between Height and BMI = -0.0137 , which is very low
y = BMI and x= Height(HT)
BMI^ = 27.9288 -0.0331 HT