Question

In: Physics

A 0.0038 kg leaf falls 16.8 m to the ground, where it lands with a speed...

A 0.0038 kg leaf falls 16.8 m to the ground, where it lands with a speed of 12.2 m/s. What was the average force of air resistance on the leaf while it was falling?

Solutions

Expert Solution

The energy required to push the air out of the way is proportional to the square of the velocity. As the object falls, its velocity increases, and so does the drag.

At some point, the force from the drag equals the force from gravity. That's terminal velocity. At that point, the forces balance, and the object won't increase in speed, but its momentum is constant. It continues to fall at that speed until it hits the ground.

The formula is:



and we're looking for the point at which the force of gravity (F=mg) is equal to the drag force:

g=12ρv2CDAm

For a random leaf, let's say that the area is 6 cm square and the mass is 1 gram. ρ will be 1.2 kg/m^3 for air. g is 9.8 m/s^2. Let's say for simplicity that CD (the coefficient of friction) is 1.

Solving for v, we get 2 meters per second, or about 4 miles per hour, at its top speed. The numbers here will vary a lot from leaf to leaf, but it gives the gist; actual numbers will be in the range of a slow walking pace.


Related Solutions

An object is launched horizontally with a speed of 78.8 m/s. It lands on the ground...
An object is launched horizontally with a speed of 78.8 m/s. It lands on the ground 19.6 m from where it was launched. How high above the ground was it launched from? Report your answer in SI units, rounded to two decimal places.
A 52.0-kg sandbag falls off a rooftop that is 22.0 m above the ground. The collision...
A 52.0-kg sandbag falls off a rooftop that is 22.0 m above the ground. The collision between the sandbag and the ground lasts for a total of 17.0 ms. What is the magnitude of the average force exerted on the sandbag by the ground during the collision? I don't even know where to start... what formulas should I be using?
A 66.5-kg person throws a 0.0500-kg snowball forward with a ground speed of 33.5 m/s. A...
A 66.5-kg person throws a 0.0500-kg snowball forward with a ground speed of 33.5 m/s. A second person, with a mass of 57.5 kg, catches the snowball. Both people are on skates. The first person is initially moving forward with a speed of 2.35 m/s, and the second person is initially at rest. What are the velocities of the two people after the snowball is exchanged? Disregard the friction between the skates and the ice. (Take the direction the snowball...
1. A 0.4 kg ball hits the ground (vertically) at a speed of 6 m/s, bouncing...
1. A 0.4 kg ball hits the ground (vertically) at a speed of 6 m/s, bouncing back in the opposite direction at 4 m/s. Calculate the magnitude of the impulse provided by the ground to the ball. A. 2 Ns B. 10 Ns C. 4 Ns D. 0.8 Ns 2.Calculate the recoil speed of a 1.4 kg rifle shooting 0.006 kg bullets with muzzle speed of 800 m/s A. 3.43 m/s B. 571 m/s C. 1.22 m/s D. 6.42 m/s...
(a) A small projectile is launched from the ground and lands on the ground at the...
(a) A small projectile is launched from the ground and lands on the ground at the same height. Assuming linear air resistance, compute the time that the projectile travels under the following conditions: launch speed v0 = 4.00 m/s launch angle θ = 30.0 degrees retarding constant k = 1.00 1/s You may use the perturbation method (b) Compute the horizontal distance that the projectile travels.
A projectile is fired from the ground, reaches a maximum height of 26.8 m and lands...
A projectile is fired from the ground, reaches a maximum height of 26.8 m and lands a distance of 76.7 m away from the launch point. What was the projectile s launch velocity? A) 28.2 m/s, 54.4 degrees above horizontal B) 22.9 m/s, 27.2 degrees above horizontal C) 16.4 m/s, 16.3 degrees above horizontal D) 42.3 m/s, 8.2 degrees above horizontal
A) A body falls on the ground from a height of 10 m and rebounds to...
A) A body falls on the ground from a height of 10 m and rebounds to a height of 2.5 m. Calculate the percentage loss of kinetic energy of the body during its collision with the ground. B) A bomb explodes into two fragments of masses 3.0 kg and 1.0 kg. The total kinetic energy of the fragment is 6x10^4 joule. calculate the kinetic energy of the bigger fragment, and the momentum of the smaller fragment.
An otter jumps horizontally off a cliff with a speed of 2.72 m/s and lands in...
An otter jumps horizontally off a cliff with a speed of 2.72 m/s and lands in the water a horizontal distance of 4.67 m from the edge of the cliff. How high above the water did the otter jumps from? _________ m
a high speed dart is shot from ground level with a speed of 140 m/s at...
a high speed dart is shot from ground level with a speed of 140 m/s at a angle 30 degrees above the horizontal. 1. What is the speed& direction of the dart after 6 sec if the air resistance is neglected. 2. How high above the projection point is the ball after 6 seconds? 3. What is the horizontal displacement of the dart at that instance.
A projectile launched from ground level lands 2.44 s later on a level field 40.0 m...
A projectile launched from ground level lands 2.44 s later on a level field 40.0 m away from the launch point. How many degrees is the projectile above the horizontal?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT