Question

In: Physics

Consider a microscopic springmass system (with a single spring and a single mass) whose spring stiffness...

Consider a microscopic springmass system (with a single spring and a single mass) whose spring stiffness is k = 50 N/m and mass is m = 4 × 10−26 kg. a. What is the smallest amount of vibrational energy that can be added to this system? b. In a collection of microscopic oscillators, the temperature is high enough that the ground state and the first three excited states are occupied. What are the possible energies and wavelengths of the photons emitted by the oscillators.

Solutions

Expert Solution

Given is:-

Spring constant K = 50N/m

mass  

Now,

part -a

Using the relations  

or

eq-1

where

by plugging all the values in eq-1 we get

This is the smallest amount of vibrational energy that can be added to the given system

Part - b

The possible energies of photons emitted by these oscillators is,

Energy of highest energy photon will be

We also know that   or

by plugging all the values we get the required wavelength

which gives us

similarly

Energy of the next highest photon is

and the wavelength is

and the energy of the lowest photon is

and


Related Solutions

An object with mass 3.5 kg is attached to a spring with spring stiffness constant k...
An object with mass 3.5 kg is attached to a spring with spring stiffness constant k = 270 N/m and is executing simple harmonic motion. When the object is 0.020 m from its equilibrium position, it is moving with a speed of 0.55 m/s.(a) Calculate the amplitude of the motion._____ m(b) Calculate the maximum velocity attained by the object. [Hint: Use conservation of energy.]______ m/s
Consider a mass-spring-dashpot system with mass 5kg, a spring which is stretched 3 meters by a...
Consider a mass-spring-dashpot system with mass 5kg, a spring which is stretched 3 meters by a force of 10N, and a dashpot which provides a 4N resistance for each m/s of velocity. The mass is also acted on by a periodic force 5 cos(ωt) for some number ω. • For what value of ω (if any) does practical resonance occur? • If the mass starts at rest, at equilibrium, find a formula for x(t) (in terms of ω), the distance...
Consider a mass-spring-dashpot system with mass 5kg, a spring which is stretched 6 meters by a...
Consider a mass-spring-dashpot system with mass 5kg, a spring which is stretched 6 meters by a force of 20N, and a dashpot which provides 4N resistance for each m/s of velocity. The mass is also acted on by a periodic force 5 cos(ωt) for some number ω. For what value of ω (if any) does practical resonance occur? If the mass starts at rest, at equilibrium, find a formula for x(t) in terms of ω, the distance between the mass...
Consider a mass spring system. The spring has a constant k=30N/m and mass=3kg. The mass oscillates...
Consider a mass spring system. The spring has a constant k=30N/m and mass=3kg. The mass oscillates w/amplitude of 10cm. a.)what is the frequency of oscillation b.) what is the displacement at time t=0 c.) when is the first time the mass is at maximum displacement? (t=?) d.) what is the maximum acceleration felt by the mass? Where in the motion does this occur? e.)what is the minimum acceleration felt by the mass? Where in the motion does this occur? f.)What...
A particle of mass 1 is attached to a spring dashpot mechanism. The stiffness constant of...
A particle of mass 1 is attached to a spring dashpot mechanism. The stiffness constant of the spring is 3 N/m and the drag force exerted on the particle by the dashpot mechanism is 4 times its velocity. At time t=0, the particle is stretched 1/4 m from its equilibrium position. At time t=3 seconds, an impulsive force of very short duration is applied to the system. This force imparts an impulse of 2 N*s to the particle. Find the...
A 1 3 -kg mass is attached to a spring with stiffness 4 N/m. The damping...
A 1 3 -kg mass is attached to a spring with stiffness 4 N/m. The damping constant for the system is 2 N-sec/m. The mass is displaced 1 2m to the left and given an initial velocity of 2 m/s to the right. (a) Determine the equation of the motion of mass and express it in the form A e αt sin(βt + φ) by finding the constants A, α, β and φ in radians. (b) Find the time t...
A 3-kg mass is attached to the end of a coil spring with stiffness k=48N/m ....
A 3-kg mass is attached to the end of a coil spring with stiffness k=48N/m . The mass is then pulled down 0.5m (from its equilibrium position) and released at t = 0 with an initial velocity of 2 m/sec directed upward. Neglect the resistance of the medium. a) Determine the resulting displacement and velocity as functions of time. b) Find amplitude, period and frequency of the motion. c) At what time does the weight first pass through the equilibrium...
The displacement of a block of mass 1.280 kg attached to a spring whose spring constant...
The displacement of a block of mass 1.280 kg attached to a spring whose spring constant is 50 N/m is given by x = A cos ωt, where A = 12 cm. In the first complete cycle, find the values of x and t at which the kinetic energy is equal to one half the potential energy.
If an undamped spring-mass system with a mass that weighs 24 lb and a spring constant...
If an undamped spring-mass system with a mass that weighs 24 lb and a spring constant 9 lbin is suddenly set in motion at t=0 by an external force of 180cos(8t) lb, determine the position of the mass at any time. Assume that g=32 fts2. Solve for u in feet.
If an undamped spring-mass system with a mass that weighs 6 lb and a spring constant...
If an undamped spring-mass system with a mass that weighs 6 lb and a spring constant 9 lb/in is suddenly set in motion at t=0 by an external force of 99cos(20t) lb, determine the position of the mass at any time. Assume that g=32 ft/s2. Solve for u in feet.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT