In: Mechanical Engineering
explain in the Fortran 77 code performance evaluation of evaporative cooler with corrugated fins and spherical fins...
mention it's parameter in Fortran 77 and plot graph using fortran 77
skip it.....if u can't answer it.....
"!2-D interpolation"
"This example uses the Interpolate2D function to return values of compressor power and mass flow rate as a function of the evaporator and condenser saturation temperatures. The compressor map data are in the Lookup table."
P$='Power'
M$='m_dot'
P[1]=interpolate2d('compressormap', P$,
T_cond,T_evap,T_cond=TC[1],T_evap=TE[1]) "[W]"
m_dot[1]=interpolate2d('compressormap', M$,
T_cond,T_evap,T_cond=TC[1],T_evap=TE[1])
"[lb_m/hr]"
TE[1]=27.5 [°F] "saturation temperature in
the evaporator"
TC[1]=85 [°F] "saturation temperature in the
condensor"
"The plot window provides a plot of Power vs saturated evaporator temperature for different saturated condensing temperatures. The interpolated value of power is shown on the plot with a red square. "
$TabWidth 1 cm
C LENGTH OF CAPILLARY TUBE ID=1.63mm R-22 Tc=40 Te=5
w=0.010kg/s
C AT THE INLET OF CAPILLARY TUBE
IMPLICIT NONE
Double Precision :: t1, z,y,p1, Vf1,V1, Vg1, hf1, hg1,
uf1, ug1, d,
*Vel1, Re1,f1, t, p, Vf, Vg, hf, hg, uf, ug, Vel, Re, f, g, x,
a,
* b,c, u, v, h,fm
REAL:: E=2.718281828, pie=3.141592654, dia=1.63E-3,
w=0.010
c print*, "enter the value of temperature"
t1=40
z=2418.4/(t1+273.15)
y=15.06-z
p1=1000*E**y
print*, "Pressure=", p1/1000
Vf1=(0.777+0.002062*t1+0.00001608*t1**2)/1000
V1=Vf1
PRINT*, "specific volume of saturated liquid=",
Vf1
hf1= 200+1.172*t1+0.001854*t1**2
print*, "enthalpy of saturated liquid=", hf1
uf1=0.0002367-(t1*1.715E-6)+(t1*t1*8.869E-9)
print*, "viscosity of saturated liquid=", uf1
d= (w*4)/(pie*dia**2)
Vel1=d*Vf1
print*, "velocity=", Vel1
Re1=(Vel1*dia)/(Vf1*uf1)
print*, "Reynolds Number=", Re1
f1=0.33/(Re1)**0.25
print*, "Friction Factor=", f1
t=39
z=2418.4/(t+273.15)
y=15.06-z
p=1000*E**y
print*, "Pressure=", p/1000
Vf=(0.777+0.002062*t+0.00001608*t*t)/1000
print*, "Vf=", Vf
Vg= (-4.26+94050*(t+273.15)/p)/1000
print*, "Vg=", Vg
hf= 200+1.172*t+0.001854*t**2
print*, "hf=", hf
hg=405.5+0.3636*t-0.002273*t**2
print*, "hg=", hg
uf=0.0002367-(t*1.715E-6)+(t*t*8.869E-9)
print*, "uf=", uf
ug= (11.945E-6)+(t*50.06E-9)+(t*t*0.2560E-9)
print*, "ug=", ug
d= (w*4)/(pie*dia**2)
a=0.5*(Vg-Vf)*(Vg-Vf)*d**2
print*, "a=", a
b=1000*(hg-hf)+Vf*(Vg-Vf)*d**2
print*, "b=", b
c=1000*(hf-hf1)+(0.5*d*d*Vf**2)-(0.5*Vel1**2)
print*, "c=", c
x=(-b+ SQRT((b*b)-(4*a*c)))/(2*a)
print*, "dryness fraction=", x
h=hf*(1-x)+x*hg
print*, "enthalpy=", h
v=vf*(1-x)+vg*x
print*, "specific volume=", v
u=uf*(1-x)+x*ug
print*, "viscosity=", u
Vel=d*v
print*, "velocity=", Vel
Re=(Vel*d)/(V*u)
print*, "Reynolds Number=", Re
f=0.33/(Re)**0.25
print*, "friction factor=", f
stop
end