In: Computer Science
Write a program driver that demonstrates that
your additions work. Use the following sets as part of your
demonstration
A {1,3,8}
B {2,3,5,10}
C {4,6}
show
A && B
A - B
A || B
A / B
A && C
A - C
A || C
A / C
class Question{
/* m is the number of elements in arr1[]
   n is the number of elements in
arr2[]
o is the number of elements in arr3 */
    static
void printIntersection(int
arr1[], int arr2[],
int m, int
n)
    {
        int
i = 0, j =
0;
        while
(i < m && j < n) {
            if
(arr1[i] < arr2[j])
                i++;
            else
if (arr2[j] < arr1[i])
                j++;
            else
{
                System.out.print(arr2[j++]
+ " ");
                i++;
            }
        }
    }
    static
int printUnion(int
arr1[], int arr2[],
int m, int
n)
    {
        int
i = 0, j =
0;
        while
(i < m && j < n) {
            if
(arr1[i] < arr2[j])
                System.out.print(arr1[i++]
+ " ");
            else
if (arr2[j] < arr1[i])
                System.out.print(arr2[j++]
+ " ");
            else
{
                System.out.print(arr2[j++]
+ " ");
                i++;
            }
        }
    static
void relativeComplement(int
arr1[], int arr2[],int
m, int n)
{
        int
i = 0, j =
0;
        while
(i < n && j < m)
        {
            if
(arr1[i] < arr2[j])
            {
              System.out.print(arr1[i]+"");
                i++;
            }
else if
(arr1[i] > arr2[j])
            {
                j++;
            }
            else
if (arr1[i] == arr2[j])
            {
                i++;
                j++;
            }
        }
        while
(i < n)
            System.out.print(arr1[i]
+ " ");
    }
    public
static void main(String
args[])
    {
        int
arr1[] = {1,3,8};
        int
arr2[] =
{2,3,5,10};
  int arr2[] =
{4,6};
        int
m = arr1.length;
        int
n = arr2.length;
  int o =
arr3.length;
        printIntersection(arr1,arr2,m,n);
  printUnion(arr1,arr2,m,n);
relativeComplement(arr1,arr2,m,n)
    }
}
A\B is same as A-B both are called as Rlative
Complement.
please follow the above program for other.