In: Chemistry
A certain liquid has a vapor pressure of 92.0 Torr at 23.0 °C and 323.0 Torr at 45.0 °C.
a.) Calculate the value of ΔH°vap for this liquid.
b.) Calculate the normal boiling point of this liquid.
For solving this, you will be needing clausius-clapyron
eqaution:
the equation is:
logP2/P1 = delta H/(2.303*R) * (1/T1-1/T2)
in our case,
P1=92 torr
P2=323 torr
T1=(23+273 )= 296 K
T2=(45+273)= 318 K
deltaH = heat of vaporisation in cal/mole
T2 and T1 are temp in kelvin
R=1.99 cal/mole-k
now, plugging in the values,
log (323/92) =0.5454
2.303*R=2.303*1.99=4.5829cal/mole-k ...
1/T1-1/T2=0.0002337K
Therefore,
deltaH = 0.5454*4.5829/0.0002337 =10695.4 cal or 10695.4/239 kJ
= 44.75 KJ
b)
suppose normal boiling point is T2
Corresponding vap pressure P2 would be atm pr =760 torr
log(760/92)=0.9170 , P1=92 torr
2.303*R=2.303*1.99=4.5829cal/mole-k
now,
1/T1-1/T2= (1/296-1/T2) , T1=273+23=296k
1/T1-1/T2=( 0.003378 - 1/T2)
Heat of vaporisation = 47.9kj given=47.9*239cal = 11448cal 1 kJ =
239.0057
Therefore, 0.9170*4.5829/11448=0.003378-1/T2 ...
0.0003671=0.003378-1/T2
1/T2=0.003378-0.0003871=0.0030109 ...
T2=332K or 59 degree celcius