In: Math
During the holiday season, shoppers were asked to estimate how much money they spent on gifts for themselves. Raw data is given below. Are the reported amounts significantly less than the actual amounts as determined from the receipts?
1) Write Ho (null) and H1 (alternative); indicate which is being tested.
2) Perform the statistical test ad write answer to the original question as a statement related to the original query
2) Construct a 99% confidence interval estimate of the mean difference between reported amounts and actual amounts . Interpret the resulting confidence interval, does it contain 0?
Actual | Reported |
53 | 26 |
67 | 45 |
72 | 54 |
72 | 49 |
62 | 35 |
70 | 41 |
73 | 41 |
68 | 49 |
64 | 38 |
58 | 31 |
73 | 44 |
37 | 19 |
63 | 32 |
67 | 37 |
52 | 29 |
59 | 33 |
64 | 39 |
36 | 19 |
59 | 30 |
72 | 48 |
57 | 32 |
61 | 33 |
54 | 28 |
40 | 23 |
63 | 42 |
43 | 23 |
66 | 34 |
60 | 31 |
60 | 34 |
61 | 34 |
40 | 26 |
64 | 48 |
65 | 48 |
49 | 29 |
47 | 29 |
59 | 35 |
72 | 44 |
65 | 39 |
63 | 40 |
70 | 50 |
48 | 31 |
50 | 38 |
76 | 55 |
46 | 27 |
61 | 44 |
63 | 44 |
48 | 26 |
41 | 26 |
53 | 30 |
52 | 28 |
46 | 23 |
43 | 24 |
75 | 54 |
57 | 32 |
The calculations are given after the Hypothesis Testing
From the data, Mean of the differences()
= -22.889 and Std Deviation of differences (sd) = 4.89
The degrees of freedom (df) = n - 1 = 54 - 1 = 53
= 0.05 (Default)
The Hypothesis:
H0:
= 0
H0:
< 0 (Claim)
The Test Statistic:
P value: The p value (Left tailed) for t = -34.40, df = 53; p value = 0.000
The Critical
Value: The critical value(Right Tailed) at
= 0.05, df = 6; critical value = -1.6741
The Decision Rule: If t observed is < -t critical, then Reject H0.
Also, if p value is <
, Then Reject H0.
The Decision: Since t observed (-34.40) is < -t critical (-1.6741), we reject H0.
Also, since p value (0.000) is <
(0.05), we reject H0.
The Conclusion: Reject H0. There is sufficient evidence at the 95% level of significance to conclude that reported amounts are significantly lesser than the actual amounts as determined from the receipts.
_________________________________________________________________________
The 99% CI for the mean difference
The CI for the mean difference is given by
ME
ME = tcritical * Sd/Sqrt(n) = 2.618 * 4.89/Sqrt(54) = 1.778
The Lower Limit = -22.889 - 1.782 = -24.667
The Upper Limit = -22.889 + 1.782 = -21.111
The 99% CI is (-24.667, -21.111)
We are 99% confident that the population mean difference of spending lies between the confidence limits -24.667 to -21.111.
No, The confidence interval does not contain 0. Therefore we
will reject the null hypothesis that
= 0.
__________________________________________________________________________________
Calculation for the mean and standard deviation:
Mean = Sum of observation / Total Observations
Standard deviation = SQRT(Variance)
Variance = Sum Of Squares (SS) / n - 1, where
SS = SUM(X - Mean)2.
Actual | Reported | Difference | Mean | (x - Mean)2 | |
1 | 53 | 26 | -27 | -22.889 | 16.900321 |
2 | 67 | 45 | -22 | -22.889 | 0.790321 |
3 | 72 | 54 | -18 | -22.889 | 23.902321 |
4 | 72 | 49 | -23 | -22.889 | 0.012321 |
5 | 62 | 35 | -27 | -22.889 | 16.900321 |
6 | 70 | 41 | -29 | -22.889 | 37.344321 |
7 | 73 | 41 | -32 | -22.889 | 83.010321 |
8 | 68 | 49 | -19 | -22.889 | 15.124321 |
9 | 64 | 38 | -26 | -22.889 | 9.678321 |
10 | 58 | 31 | -27 | -22.889 | 16.900321 |
11 | 73 | 44 | -29 | -22.889 | 37.344321 |
12 | 37 | 19 | -18 | -22.889 | 23.902321 |
13 | 63 | 32 | -31 | -22.889 | 65.788321 |
14 | 67 | 37 | -30 | -22.889 | 50.566321 |
15 | 52 | 29 | -23 | -22.889 | 0.012321 |
16 | 59 | 33 | -26 | -22.889 | 9.678321 |
17 | 64 | 39 | -25 | -22.889 | 4.456321 |
18 | 36 | 19 | -17 | -22.889 | 34.680321 |
19 | 59 | 30 | -29 | -22.889 | 37.344321 |
20 | 72 | 48 | -24 | -22.889 | 1.234321 |
21 | 57 | 32 | -25 | -22.889 | 4.456321 |
22 | 61 | 33 | -28 | -22.889 | 26.122321 |
23 | 54 | 28 | -26 | -22.889 | 9.678321 |
24 | 40 | 23 | -17 | -22.889 | 34.680321 |
25 | 63 | 42 | -21 | -22.889 | 3.568321 |
26 | 43 | 23 | -20 | -22.889 | 8.346321 |
27 | 66 | 34 | -32 | -22.889 | 83.010321 |
28 | 60 | 31 | -29 | -22.889 | 37.344321 |
29 | 60 | 34 | -26 | -22.889 | 9.678321 |
30 | 61 | 34 | -27 | -22.889 | 16.900321 |
31 | 40 | 26 | -14 | -22.889 | 79.014321 |
32 | 64 | 48 | -16 | -22.889 | 47.458321 |
33 | 65 | 48 | -17 | -22.889 | 34.680321 |
34 | 49 | 29 | -20 | -22.889 | 8.346321 |
35 | 47 | 29 | -18 | -22.889 | 23.902321 |
36 | 59 | 35 | -24 | -22.889 | 1.234321 |
37 | 72 | 44 | -28 | -22.889 | 26.122321 |
38 | 65 | 39 | -26 | -22.889 | 9.678321 |
39 | 63 | 40 | -23 | -22.889 | 0.012321 |
40 | 70 | 50 | -20 | -22.889 | 8.346321 |
41 | 48 | 31 | -17 | -22.889 | 34.680321 |
42 | 50 | 38 | -12 | -22.889 | 118.570321 |
43 | 76 | 55 | -21 | -22.889 | 3.568321 |
44 | 46 | 27 | -19 | -22.889 | 15.124321 |
45 | 61 | 44 | -17 | -22.889 | 34.680321 |
46 | 63 | 44 | -19 | -22.889 | 15.124321 |
47 | 48 | 26 | -22 | -22.889 | 0.790321 |
48 | 41 | 26 | -15 | -22.889 | 62.236321 |
49 | 53 | 30 | -23 | -22.889 | 0.012321 |
50 | 52 | 28 | -24 | -22.889 | 1.234321 |
51 | 46 | 23 | -23 | -22.889 | 0.012321 |
52 | 43 | 24 | -19 | -22.889 | 15.124321 |
53 | 75 | 54 | -21 | -22.889 | 3.568321 |
54 | 57 | 32 | -25 | -22.889 | 4.456321 |
Total | -1236 | 1267.33333 |
n | 54 |
Sum | -1236 |
Average | -22.889 |
SS | 1267.333334 |
Variance | 23.9119497 |
Std Dev | 4.8900 |