In: Statistics and Probability
5. [20 pts.] Historical data is often used in marketing to drive estimates of future demand. A common estimate (or forecast) used to predict future demand is the moving average. This forecasting method considers a weighted average where the m most recent observations receive the same weight, while all the remaining observations receive a weight of zero. Of course, the value of m is a parameter of the method, and it is up to the user to fine tune it for the application of his(her) choice. To compute an ?-period moving average use the following equation:
?? = 1m (??-1 + ??-2 + ⋯ + ??-m )
The mean absolute deviation is a criterion used to compare forecasting models. The absolute deviation for any given period is the absolute difference between the forecast and the observed demand for the period (i.e., ?(?) = |F(?) − D(?)|). Once an absolute deviation is calculated for every single forecasting period, they are averaged to produce the estimate of the mean absolute deviation (MAD) of the model.
| 
 Period (t)  | 
 Demand D(t)  | 
 Ft m=3  | 
 Error  | 
 Ft m=4  | 
 Error  | 
 Ft m=5  | 
 Error  | 
| 
 1  | 
|||||||
| 
 2  | 
|||||||
| 
 3  | 
|||||||
| 
 4  | 
|||||||
| 
 5  | 
|||||||
| 
 6  | 
|||||||
| 
 7  | 
|||||||
| 
 8  | 
|||||||
| 
 9  | 
|||||||
| 
 10  | 
|||||||
| 
 11  | 
|||||||
| 
 12  | 
|||||||
| 
 13  | 
|||||||
| 
 14  | 
|||||||
| 
 15  | 
|||||||
| 
 16  | 
|||||||
| 
 17  | 
|||||||
| 
 18  | 
|||||||
| 
 19  | 
|||||||
| 
 20  | 
For this example, apply an exponential smoothing model with m = 3 to forecast the monthly sales for months 4 through 20.
Use m = 4. How do these results compare to the ones in (5a)?
Use m = 5. How do these results compare to the ones in (5a) and (5b)?
Calculate the mean absolute deviation (MAD) of each model. Which value of m would you prefer for this situation? Why?
| Period | Demand D(t) | Ft | Error | Ft | Error | Ft | Error | 
| (t) | m=3 | m=4 | m=5 | ||||
| 1 | 58 | ||||||
| 2 | 62 | ||||||
| 3 | 57 | ||||||
| 4 | 56 | 59 | 3 | ||||
| 5 | 40 | 58.33333 | 18.3333333 | 58.25 | 18.25 | ||
| 6 | 56 | 51 | 5 | 53.75 | 2.25 | 54.6 | 1.4 | 
| 7 | 48 | 50.66667 | 2.66666667 | 52.25 | 4.25 | 54.2 | 6.2 | 
| 8 | 29 | 48 | 19 | 50 | 21 | 51.4 | 22.4 | 
| 9 | 82 | 44.33333 | 37.6666667 | 43.25 | 38.75 | 45.8 | 36.2 | 
| 10 | 56 | 53 | 3 | 53.75 | 2.25 | 51 | 5 | 
| 11 | 45 | 55.66667 | 10.6666667 | 53.75 | 8.75 | 54.2 | 9.2 | 
| 12 | 55 | 61 | 6 | 53 | 2 | 52 | 3 | 
| 13 | 61 | 52 | 9 | 59.5 | 1.5 | 53.4 | 7.6 | 
| 14 | 52 | 53.66667 | 1.66666667 | 54.25 | 2.25 | 59.8 | 7.8 | 
| 15 | 50 | 56 | 6 | 53.25 | 3.25 | 53.8 | 3.8 | 
| 16 | 48 | 54.33333 | 6.33333333 | 54.5 | 6.5 | 52.6 | 4.6 | 
| 17 | 52 | 50 | 2 | 52.75 | 0.75 | 53.2 | 1.2 | 
| 18 | 48 | 50 | 2 | 50.5 | 2.5 | 52.6 | 4.6 | 
| 19 | 46 | 49.33333 | 3.33333333 | 49.5 | 3.5 | 50 | 4 | 
| 20 | 40 | 48.66667 | 8.66666667 | 48.5 | 8.5 | 48.8 | 8.8 | 
| MAD | 8.49019608 | MAD | 7.890625 | MAD | 8.386667 | 
m = 4 would be preferred for this situation because it has the lowest MAD value.