In: Statistics and Probability
5. [20 pts.] Historical data is often used in marketing to drive estimates of future demand. A common estimate (or forecast) used to predict future demand is the moving average. This forecasting method considers a weighted average where the m most recent observations receive the same weight, while all the remaining observations receive a weight of zero. Of course, the value of m is a parameter of the method, and it is up to the user to fine tune it for the application of his(her) choice. To compute an ?-period moving average use the following equation:
?? = 1m (??-1 + ??-2 + ⋯ + ??-m )
The mean absolute deviation is a criterion used to compare forecasting models. The absolute deviation for any given period is the absolute difference between the forecast and the observed demand for the period (i.e., ?(?) = |F(?) − D(?)|). Once an absolute deviation is calculated for every single forecasting period, they are averaged to produce the estimate of the mean absolute deviation (MAD) of the model.
Period (t) |
Demand D(t) |
Ft m=3 |
Error |
Ft m=4 |
Error |
Ft m=5 |
Error |
1 |
|||||||
2 |
|||||||
3 |
|||||||
4 |
|||||||
5 |
|||||||
6 |
|||||||
7 |
|||||||
8 |
|||||||
9 |
|||||||
10 |
|||||||
11 |
|||||||
12 |
|||||||
13 |
|||||||
14 |
|||||||
15 |
|||||||
16 |
|||||||
17 |
|||||||
18 |
|||||||
19 |
|||||||
20 |
For this example, apply an exponential smoothing model with m = 3 to forecast the monthly sales for months 4 through 20.
Use m = 4. How do these results compare to the ones in (5a)?
Use m = 5. How do these results compare to the ones in (5a) and (5b)?
Calculate the mean absolute deviation (MAD) of each model. Which value of m would you prefer for this situation? Why?
Period | Demand D(t) | Ft | Error | Ft | Error | Ft | Error |
(t) | m=3 | m=4 | m=5 | ||||
1 | 58 | ||||||
2 | 62 | ||||||
3 | 57 | ||||||
4 | 56 | 59 | 3 | ||||
5 | 40 | 58.33333 | 18.3333333 | 58.25 | 18.25 | ||
6 | 56 | 51 | 5 | 53.75 | 2.25 | 54.6 | 1.4 |
7 | 48 | 50.66667 | 2.66666667 | 52.25 | 4.25 | 54.2 | 6.2 |
8 | 29 | 48 | 19 | 50 | 21 | 51.4 | 22.4 |
9 | 82 | 44.33333 | 37.6666667 | 43.25 | 38.75 | 45.8 | 36.2 |
10 | 56 | 53 | 3 | 53.75 | 2.25 | 51 | 5 |
11 | 45 | 55.66667 | 10.6666667 | 53.75 | 8.75 | 54.2 | 9.2 |
12 | 55 | 61 | 6 | 53 | 2 | 52 | 3 |
13 | 61 | 52 | 9 | 59.5 | 1.5 | 53.4 | 7.6 |
14 | 52 | 53.66667 | 1.66666667 | 54.25 | 2.25 | 59.8 | 7.8 |
15 | 50 | 56 | 6 | 53.25 | 3.25 | 53.8 | 3.8 |
16 | 48 | 54.33333 | 6.33333333 | 54.5 | 6.5 | 52.6 | 4.6 |
17 | 52 | 50 | 2 | 52.75 | 0.75 | 53.2 | 1.2 |
18 | 48 | 50 | 2 | 50.5 | 2.5 | 52.6 | 4.6 |
19 | 46 | 49.33333 | 3.33333333 | 49.5 | 3.5 | 50 | 4 |
20 | 40 | 48.66667 | 8.66666667 | 48.5 | 8.5 | 48.8 | 8.8 |
MAD | 8.49019608 | MAD | 7.890625 | MAD | 8.386667 |
m = 4 would be preferred for this situation because it has the lowest MAD value.