Question

In: Physics

Two children (m = 28.0 kg each) stand opposite each other on the edge of a...

Two children

(m = 28.0 kg

each) stand opposite each other on the edge of a merry-go-round. The merry-go-round, which has a mass of 1.62 ✕ 102 kg and a radius of 1.2 m, is spinning at a constant rate of 0.48 rev/s. Treat the two children and the merry-go-round as a system.

(a) Calculate the angular momentum of the system, treating each child as a particle. (Give the magnitude.)
kg · m2/s

(b) Calculate the total kinetic energy of the system.
J

(c) Both children walk half the distance toward the center of the merry-go-round. Calculate the final angular speed of the system.
rad/s

Solutions

Expert Solution


Related Solutions

two fishermen, of masses 70 and 90 kg stand at opposite ends of their 20 meter...
two fishermen, of masses 70 and 90 kg stand at opposite ends of their 20 meter boat. the boat ( without fisherman) has a mass of 400 kg. There is no wind or current and the boat can move without friction on the water's surface. The 90 kg fisherman walks to the left end of the boat. How far the moved when the fisherman reaches the left end?
Three children, each of mass 15 kg, ride at the edge of a frictionless merry-go-round of...
Three children, each of mass 15 kg, ride at the edge of a frictionless merry-go-round of mass 163 kg and radius 1.2 meters.  The children jump off outward, directly away from the center, taking zero angular momentum with them.   If the angular velocity of the merry-go-round before they jumped was  = 0.3 rad/s, what is its angular velocity after they jump? Treat the merry-go-round as a solid cylinder. 2 sig figs, units (rad/s)
Consider a conical pendulum with a bob of mass m = 28.0 kg on a string...
Consider a conical pendulum with a bob of mass m = 28.0 kg on a string of length L = 7.00 m that makes an angle of θ = 4.00° with the vertical. a) Draw the direction of the acceleration of the ball b) What force(s) cause this acceleration? c) Determine the centripetal acceleration of the bob. d) Determine the speed of the ball.
Two projectiles with 50kg mass each are launched in opposite directions towards each other, both at...
Two projectiles with 50kg mass each are launched in opposite directions towards each other, both at an angle of 30 degrees off the horizontal. They both have the same initial velocity of 75m/s and they are separated by a distance of 200m. a.) What is their combined initial kinetic energy? b.) Right before they collide, how high off the ground are they? c.) What is their total momentum here? (both directions) d.) When they collide they stick together and lost...
Three children are riding on the edge of a merry-go-round that is 105 kg, has a...
Three children are riding on the edge of a merry-go-round that is 105 kg, has a 1.60-m radius, and is spinning at 16.0 rpm. The children have masses of 22.0, 28.0, and 33.0 kg. If the child who has a mass of 28.0 kg moves to the center of the merry-go-round, what is the new angular velocity in rpm? Ignore friction, and assume that the merry-go-round can be treated as a solid disk and the children as points.
Three children are riding on the edge of a merry-go-round that is 122 kg, has a...
Three children are riding on the edge of a merry-go-round that is 122 kg, has a 1.60 m radius, and is spinning at 17.3 rpm. The children have masses of 19.9, 29.5, and 40.8 kg. If the child who has a mass of 29.5 kg moves to the center of the merry-go-round, what is the new angular velocity in rpm?
Three children are riding on the edge of a merry-go-round that is 122 kg, has a...
Three children are riding on the edge of a merry-go-round that is 122 kg, has a 1.60 m radius, and is spinning at 15.3 rpm. The children have masses of 19.9, 29.0, and 38.8 kg. If the child who has a mass of 29.0 kg moves to the center of the merry-go-round, what is the new angular velocity in rpm?
Two particles approach each other with equal and opposite speed v. The mass of one particle...
Two particles approach each other with equal and opposite speed v. The mass of one particle is m, and the mass of the other particle is nm, where n is just a unitless number. Snapshots of the system before, during, and after the elastic collision are shown above. After the collision the first particle moves in the exact opposite direction with speed 2.40v, and the speed of the second particle is unknown. What is the value of n?
Two children of the same mass m = 22:4 kg are playing on the rotating carousel...
Two children of the same mass m = 22:4 kg are playing on the rotating carousel below. The oor of the carousel has mass M = 35:0 kg and radius R = 1:75 m. The centre of mass of each child is at a distance of r = 30:5 cm from the centre of the carousel. The carousel is rotating at an angular velocity of ! = 1:05 rad/s. (a) (1 point) What is the tangential speed of the children?...
1.Two balls of mass 5 kg each moving in opposite directions with equal speed say 10...
1.Two balls of mass 5 kg each moving in opposite directions with equal speed say 10 m/s collide head on with each other. Predict the outcome of the collision assuming it to be Perfectly elastic? Perfectly inelastic?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT