Question

In: Mechanical Engineering

Determine the mass flow rate of the refrigerant flowing through the condensor of a two-stage compression...

Determine the mass flow rate of the refrigerant flowing through the condensor of a two-stage compression refrigeration cycle (in kg/s). The fraction of the refrigerant that evaporates as it is throttled to the flash chamber is 0.19. The enthalpy of the refrigerant entering the evaporator is 55.14 kJ/kg and the enthalpy of the refrigerant leaving the evaporator is 239.19 kJ/kg. The amount of heat removed from the refrigerated space is 28 kW. (Round your answer to three decimal places).

Solutions

Expert Solution

Solution:- The given problem has been solved by drawing the schematic diagram of the the two stage compression refrigeration system. This diagram has helped in determining the various states of the refrigerant as it passes through the various elements of the system.


Related Solutions

A single stage simple vapr compression refrigeration cycle using R12 refrigerant is operating at a condenser...
A single stage simple vapr compression refrigeration cycle using R12 refrigerant is operating at a condenser temperature of 40 degrees C and an evaporator temperature of -5 degrees C. If the compressor is a reciprocating type compressor with 4 cylinder, rotating at 1800 RPM, has a cylinder diameter of 5cm, stroke length to diameter ratio of 1.4, and clearance ratio of 5%. Assume a polytropic index to be 1.13. 1- Sketch the cycle flow diagram, and identify the states on...
b) A 15 MW gas turbine plant operates with a two-stage compression and a two-stage expansion....
b) A 15 MW gas turbine plant operates with a two-stage compression and a two-stage expansion. The high-pressure turbine (HPT) drives both low-pressure compressor (LPC) and high-pressure compressor (HPC). A low-pressure turbine (LPT) is connected to a generator for electricity generation The overall pressure ratio is 16/1 and the maximum cycle temperature, which is at the inlet of the HPT, is 900°C. The gases leaving the HPT are reheated to 850°C before entering the LPT. Both compressors have equal pressure...
The mass flow rate of steam through an ideal Rankine turbine ( with an isentropic turbine...
The mass flow rate of steam through an ideal Rankine turbine ( with an isentropic turbine and an isentropic pump) is 30lbm/s. The water and or steam is at a pressure of 1000 psia throughout the boiler and superheater and exits the superheater at a temperature of 600 F. The condenser is at a pressure of 2 psia, and the water exits the condenser as a saturated liquid. Calculate the following. (a) the power output of the turbine (b) the...
An incompressible, Newtonian fluid is flowing through a vertical circular conduit (a pipe). The flow is...
An incompressible, Newtonian fluid is flowing through a vertical circular conduit (a pipe). The flow is laminar. What is the velocity at the inner wall of the pipe? How do you know? The pipe has diameter a. The velocity profile in the pipe is vz = b ­– c r2. Please express c in terms of a and b. (You are applying a boundary condition to solve this problem.) Where in the pipe is the velocity a maximum? Please express...
In the process of methanol production, a gas stream flowing at a molar flow rate of...
In the process of methanol production, a gas stream flowing at a molar flow rate of 100 mol / min containing 32 mol% CO, 64 mol% Hz. and 4 mol% of N2 is led to the reactor. The product from the reactor is condensed where liquid methanol is separated. Unreacted gases are recycled in a ratio of 5: 1 mol of recycle to moles of fresh feed. Parts of the recycled gases are purged. The reaction equation is CO +...
A Rankine cycle uses water as its working fluid. The mass flow rate of water through...
A Rankine cycle uses water as its working fluid. The mass flow rate of water through the cycle is 150 kg/s. Superheated vapour exits the boiler at 8 MPa and 560 °C. The condenser pressure is 8 kPa. The water at the pump inlet is 35 °C. The isentropic efficiency of the pump is 75% and the isentropic efficiency of the turbine is 91%. The turbine and pump can be treated as adiabatic. The pressure drops of the working fluid...
Describe the two stage dividend, and two stage cash flow valuations models. Explain for each the...
Describe the two stage dividend, and two stage cash flow valuations models. Explain for each the steps required to determine the security prices.
IV. Continuity The mass flow rate and the volume flow rate are always the same in...
IV. Continuity The mass flow rate and the volume flow rate are always the same in a closed pipe. Why do you think that has to be the case? (Try and think about what might happen if the rates were not the same).
Hot air flows with a mass flow rate of 0.05 kg/s through an insulated square duct...
Hot air flows with a mass flow rate of 0.05 kg/s through an insulated square duct with side of 0.15m, the hot air enters at 103 oC and after a distance of 5m, cools to 85 oC. The heat transfer coefficient between the duct outer surface and the ambient air (Tair = 0 oC) is 6 W/m2 K. Calculate the heat transfer coefficient between hot air and duct inner wall. Air Cp = 1.011 KJ/kg K; air k = 0.0306...
In a gas turbine with two-stage compression and expansion, the total pressure ratio is 12. Air...
In a gas turbine with two-stage compression and expansion, the total pressure ratio is 12. Air enters the compressor at a temperature of 320 K and the turbine at a temperature of 1320 K. The isanthropic efficiency of the compressors is 75%, the efficiency of the turbines is 87% and the regenerator is 78%. Considering the change of specific temperatures with temperature; a) back work rate, b) calculate the thermal efficiency of the cycle.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT