Question

In: Economics

Provide an example of a 2-player normal form game where each player has 3 (pure) strategies...

Provide an example of a 2-player normal form game where each player has 3 (pure) strategies such that:

(i) There is exactly one pure strategy Nash equilibrium.

(ii) There are exactly two pure strategy Nash equilibria.

(iii) There are exactly three pure strategy Nash equilibria.

(iv) There are exactly nine pure strategy Nash equilibria

Solutions

Expert Solution

NASH EQUILIBRIUM

Nash equilibrium is concept in the game theory where the optimal outcome of a game is where there is no incentive to deviate from their initial strategy.More specifically Nash equilibrium is a concept of game theory where the optimal outcome of a game is one player has no incentive to deviate from his chosen strategy after considering an opponents choice.Overall an individual can receive an incremental benefit from changing actions, assuming other players remaining constant in their strategies.A game may have multiple Nash equilibria or none at all.

For example imagine a game between Tom and Sam .In this simple game both players can choose strategy A ,to receive $1, or strategy B to lose $1.Logically both players chose strategy A an receive a payoff $1. If you revealed Sam's strategy to Tom and vice versa, you see that no players will deviate from the original choice.Knowing the other players move means little and doesn't change either players behavior.The outcome A , A represents a Nash equilibrium.


Related Solutions

Below is a game between player A and player B. Each player has two possible strategies:...
Below is a game between player A and player B. Each player has two possible strategies: 1 or 2. The payoffs for each combination of strategies between A and B are in the bracket. For example, if A plays 1 and B plays 1, the payoff for A is -3, and the payoff for B is -2. Player B Strategy 1 Strategy 2 Player A Strategy 1 (-3,-2) (10,0) Strategy 2 (0,8) (0,0) How many pure strategy Nash equilibria does...
Below is a game between player A and player B. Each player has two possible strategies:...
Below is a game between player A and player B. Each player has two possible strategies: 1 or 2. The payoffs for each combination of strategies between A and B are in the bracket. For example, if A plays 1 and B plays 1, the payoff for A is 1, and the payoff for B is 0. Player B Strategy 1 Strategy 2 Player A Strategy 1 (1,0) (0,1) Strategy 2 (0,1) (1,0) How many pure strategy Nash equilibria does...
Consider the game in normal form given in the followingtable. Player 1 is the “row” player...
Consider the game in normal form given in the followingtable. Player 1 is the “row” player with strategiesA,BandCandplayer 2 is the “column” player with strategiesL,CandR. The gameis given in the following table: L C R A 0,0 2,-2 -2,3 B -2,2 0,0 2,-1 C 3,1 -1,2 0,1 (a) Find whether there is a mixed strategy Nash equilibrium (M.S.N.E) where player 1 mixes between A and C and player 2 mixes between L,C and R with positive probability. (b) Find whether...
5. (Games w/o conflict) Give an example of a two player strategic game where each player...
5. (Games w/o conflict) Give an example of a two player strategic game where each player has two actions and have identical preferences over outcomes, so that there is no conflict between their interests. a. Represent the game in normal form (bimatrix). b. Support with link to news article, pictures, or similar.
Find the optimum strategies for player A and player B in the game represented by the...
Find the optimum strategies for player A and player B in the game represented by the following payoff matrix. Find the value of the game. -1 1/3 0 -4
) Consider a game where player 1’s possible three strategies are a, b and c and...
) Consider a game where player 1’s possible three strategies are a, b and c and player 2’s possible strategies are A, B and C. The players choose their strategies simultaneously. The payoff matrix of the game is as follows:                                           Player 2 A B C    a 8,5 9,7 10,8 player 1 b 6,1 10,3 7,9 c 5,4 8,6 6,4 (5 pts) Is there a dominated strategy for player 1? For player 2? Justify your answer. (5 pts) Is...
For the 2 × 2 game, find the optimal strategy for each player. Be sure to...
For the 2 × 2 game, find the optimal strategy for each player. Be sure to check for saddle points before using the formulas. 9 −1 3 9 For row player R: r1 = r2 = For column player C: c1 = c2 = Find the value v of the game for row player R. v = Who is the game favorable to? o The game is favorable to the row player. o The game is favorable to the column...
For the 2 × 2 game, find the optimal strategy for each player. Be sure to...
For the 2 × 2 game, find the optimal strategy for each player. Be sure to check for saddle points before using the formulas. 3 −3 2 3 For row player R: r1 = r2 = For column player C: c1 = c2= Find the value v of the game for row player R. v =
Convert this into Chomsky normal form, where each rule is in the form: A --> BC...
Convert this into Chomsky normal form, where each rule is in the form: A --> BC or A --> a A --> A + B | B B --> B x C | C C --> (A) | 5
A sequential game with two-players 1 and 2, where player 1 has the first move advantage....
A sequential game with two-players 1 and 2, where player 1 has the first move advantage. Each player has two strategies, A and B. If both players choose A, each gets a payoff of 2. Both choose B, each gets a payoff of 3. For player 1 choose A and player 2 choose B, player 1 gets 4, and player 2 gets 1. If player 1 chooses B and player 2 choose A, player 1 gets a payoff of 1,...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT