In: Statistics and Probability
Sycamore Plastics (SP) is a manufacturer of polyethylene plastic pellets used as a raw material by manufacturers of plastic goods around the U.S. SP currently operates four manufacturing centers in Philadelphia, PA; Atlanta, GA; St. Louis, MO; and Salt Lake City, UT. The plants have different capacities and production costs as indicated in the table below.
| PLANT | MAXIMUM
CAPACITY (× 100,000 LBS.)  | 
PROD.
COST (PER 1,000 LBS.)  | 
| Philadelphia | 8.1 | $322.00 | 
| Atlanta | 9.2 | $272.00 | 
| St. Louis | 12.1 | $302.00 | 
| Salt Lake City | 10.1 | $247.00 | 
     SP currently has six contract
customers located in New York City; Birmingham, AL; Terre Haute,
IN; Dallas, TX; Spokane, WA; and San Diego, CA. Transportation
costs between the plants and various customers, as well as
contracted demand from each customer, are shown in the table
below.
| TRANSPORT COSTS PER 1,000 LBS. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| FROM/TO | NYC | BIRMINGHAM | TERRE HAUTE | DALLAS | SPOKANE | SAN DIEGO | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Philadelphia | $46 | $53 | $57 | $63 | $72 | $85 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Atlanta | 56 | 43 | 59 | 60 | 74 | 82 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| St. Louis | 58 | 61 | 51 | 55 | 59 | 70 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Salt Lake City | 73 | 72 | 68 | 58 | 52 | 60 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Total Demand (× 1,000 lbs.)  | 
526 | 415 | 926 | 601 | 334 | 401 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 
 
 
 
  | 
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Let 
  be the quantities (in x1000lbs) shipped from 4 plants
to 6 contract customers, where 
These are the decision variables
The combined cost of transportation and production (per x1000lbs) from a plant to customer is given below
| CombinedCosts Per 1,000 lbs. | ||||||
| From/To | NYC | Birmingham | Terre Haute | Dallas | Spokane | San Diego | 
| Philadelphia | $368.00 | $375.00 | $379.00 | $385.00 | $394.00 | $407.00 | 
| Atlanta | $328.00 | $315.00 | $331.00 | $332.00 | $346.00 | $354.00 | 
| St. Louis | $360.00 | $363.00 | $353.00 | $357.00 | $361.00 | $372.00 | 
| Salt Lake City | $320.00 | $319.00 | $315.00 | $305.00 | $299.00 | $307.00 | 
For example the combined cost for Philadelphia to NYC of
transporting a quantity of 
 (x1000 lbs) is $322+$46 = $368
The total costs to supply the customer demand is

This is the objective function that we need to minimize
This cost is subjected to the following constraints
Plant Capacity
Demand from customers
the transportation model that we want to solve is
Minimize

s.t
Demand from customers

We setup the following spreadsheet


Using the formula given below
| PLANT | MAXIMUM CAPACITY | PROD. COST | TRANSPORT COSTS PER 1,000 LBS. | |||||||||
| (× 100,000 LBS.) | (PER 1,000 LBS.) | FROM/TO | NYC | BIRMINGHAM | TERRE HAUTE | DALLAS | SPOKANE | SAN DIEGO | ||||
| Philadelphia | 8.1 | 322 | Philadelphia | 46 | 53 | 57 | 63 | 72 | 85 | |||
| Atlanta | 9.2 | 272 | Atlanta | 56 | 43 | 59 | 60 | 74 | 82 | |||
| St. Louis | 12.1 | 302 | St. Louis | 58 | 61 | 51 | 55 | 59 | 70 | |||
| Salt Lake City | 10.1 | 247 | Salt Lake City | 73 | 72 | 68 | 58 | 52 | 60 | |||
| Total Demand | 526 | 415 | 926 | 601 | 334 | 401 | ||||||
| (× 1,000 lbs.) | =SUM(F7:K8) | |||||||||||
| CombinedCosts Per 1,000 lbs. | ||||||||||||
| From/To | NYC | Birmingham | Terre Haute | Dallas | Spokane | San Diego | Minimize | |||||
| Philadelphia | =F3+$C3 | =G3+$C3 | =H3+$C3 | =I3+$C3 | =J3+$C3 | =K3+$C3 | Total Cost | =SUM(B32:G32) | ||||
| Atlanta | =F4+$C4 | =G4+$C4 | =H4+$C4 | =I4+$C4 | =J4+$C4 | =K4+$C4 | ||||||
| St. Louis | =F5+$C5 | =G5+$C5 | =H5+$C5 | =I5+$C5 | =J5+$C5 | =K5+$C5 | s.t. constraints | |||||
| Salt Lake City | =F6+$C6 | =G6+$C6 | =H6+$C6 | =I6+$C6 | =J6+$C6 | =K6+$C6 | ||||||
| =SUM(B20:G20) | <= | =B3*100 | --capacity of Philadelphia (in x1000lb) | |||||||||
| =SUM(B21:G21) | <= | =B4*100 | --capacity of Atlanta (in x1000lb) | |||||||||
| Solution (× 1,000 lbs.) | =SUM(B22:G22) | <= | =B5*100 | --capacity of St. Louis (in x1000lb) | ||||||||
| From/To | NYC | Birmingham | Terre Haute | Dallas | Spokane | San Diego | =SUM(B23:G23) | <= | =B6*100 | --capacity of Salt Lake City (in x1000lb) | ||
| Philadelphia | 0 | 0 | 0 | 0 | 0 | 0 | =B24 | = | =F7 | --Demand of NYC (in x 1000lbs) | ||
| Atlanta | 0 | 0 | 0 | 0 | 0 | 0 | =C24 | = | =G7 | --Demand of Birmingham (in x 1000lbs) | ||
| St. Louis | 0 | 0 | 0 | 0 | 0 | 0 | =D24 | = | =H7 | --Demand of Terre Haute (in x 1000lbs) | ||
| Salt Lake City | 0 | 0 | 0 | 0 | 0 | 0 | =E24 | = | =I7 | --Demand of Dallas (in x 1000lbs) | ||
| Received | =SUM(B20:B23) | =SUM(C20:C23) | =SUM(D20:D23) | =SUM(E20:E23) | =SUM(F20:F23) | =SUM(G20:G23) | =F24 | = | =J7 | --Demand of spokane (in x 1000lbs) | ||
| =G24 | = | =K7 | --Demand of San Diego (in x 1000lbs) | |||||||||
| Total Costs | ||||||||||||
| From/To | NYC | Birmingham | Terre Haute | Dallas | Spokane | San Diego | ||||||
| Philadelphia | =B12*B20 | =C12*C20 | =D12*D20 | =E12*E20 | =F12*F20 | =G12*G20 | ||||||
| Atlanta | =B13*B21 | =C13*C21 | =D13*D21 | =E13*E21 | =F13*F21 | =G13*G21 | ||||||
| St. Louis | =B14*B22 | =C14*C22 | =D14*D22 | =E14*E22 | =F14*F22 | =G14*G22 | ||||||
| Salt Lake City | =B15*B23 | =C15*C23 | =D15*D23 | =E15*E23 | =F15*F23 | =G15*G23 | ||||||
| Total cost | =SUM(B28:B31) | =SUM(C28:C31) | =SUM(D28:D31) | =SUM(E28:E31) | =SUM(F28:F31) | =SUM(G28:G31) | ||||||
Next we setup the solver using data-->solver

Get the following solution
| PLANT | MAXIMUM CAPACITY | PROD. COST | TRANSPORT COSTS PER 1,000 LBS. | |||||||||
| (× 100,000 LBS.) | (PER 1,000 LBS.) | FROM/TO | NYC | BIRMINGHAM | TERRE HAUTE | DALLAS | SPOKANE | SAN DIEGO | ||||
| Philadelphia | 8.1 | $322.00 | Philadelphia | $46 | $53 | $57 | $63 | $72 | $85 | |||
| Atlanta | 9.2 | $272.00 | Atlanta | 56 | 43 | 59 | 60 | 74 | 82 | |||
| St. Louis | 12.1 | $302.00 | St. Louis | 58 | 61 | 51 | 55 | 59 | 70 | |||
| Salt Lake City | 10.1 | $247.00 | Salt Lake City | 73 | 72 | 68 | 58 | 52 | 60 | |||
| Total Demand | 526 | 415 | 926 | 601 | 334 | 401 | ||||||
| (× 1,000 lbs.) | 3203 | |||||||||||
| CombinedCosts Per 1,000 lbs. | ||||||||||||
| From/To | NYC | Birmingham | Terre Haute | Dallas | Spokane | San Diego | Minimize | |||||
| Philadelphia | $368.00 | $375.00 | $379.00 | $385.00 | $394.00 | $407.00 | Total Cost | $1,054,831 | ||||
| Atlanta | $328.00 | $315.00 | $331.00 | $332.00 | $346.00 | $354.00 | ||||||
| St. Louis | $360.00 | $363.00 | $353.00 | $357.00 | $361.00 | $372.00 | s.t. constraints | |||||
| Salt Lake City | $320.00 | $319.00 | $315.00 | $305.00 | $299.00 | $307.00 | ||||||
| 63 | <= | 810 | --capacity of Philadelphia (in x1000lb) | |||||||||
| 920 | <= | 920 | --capacity of Atlanta (in x1000lb) | |||||||||
| Solution (× 1,000 lbs.) | 1210 | <= | 1210 | --capacity of St. Louis (in x1000lb) | ||||||||
| From/To | NYC | Birmingham | Terre Haute | Dallas | Spokane | San Diego | 1010 | <= | 1010 | --capacity of Salt Lake City (in x1000lb) | ||
| Philadelphia | 63 | 0 | 0 | 0 | 0 | 0 | 526 | = | 526 | --Demand of NYC (in x 1000lbs) | ||
| Atlanta | 463 | 415 | 0 | 42 | 0 | 0 | 415 | = | 415 | --Demand of Birmingham (in x 1000lbs) | ||
| St. Louis | 0 | 0 | 926 | 284 | 0 | 0 | 926 | = | 926 | --Demand of Terre Haute (in x 1000lbs) | ||
| Salt Lake City | 0 | 0 | 0 | 275 | 334 | 401 | 601 | = | 601 | --Demand of Dallas (in x 1000lbs) | ||
| Received | 526 | 415 | 926 | 601 | 334 | 401 | 334 | = | 334 | --Demand of spokane (in x 1000lbs) | ||
| 401 | = | 401 | --Demand of San Diego (in x 1000lbs) | |||||||||
| Total Costs | ||||||||||||
| From/To | NYC | Birmingham | Terre Haute | Dallas | Spokane | San Diego | ||||||
| Philadelphia | $23,184.00 | $0.00 | $0.00 | $0.00 | $0.00 | $0.00 | ||||||
| Atlanta | $151,864.00 | $130,725.00 | $0.00 | $13,944.00 | $0.00 | $0.00 | ||||||
| St. Louis | $0.00 | $0.00 | $326,878.00 | $101,388.00 | $0.00 | $0.00 | ||||||
| Salt Lake City | $0.00 | $0.00 | $0.00 | $83,875.00 | $99,866.00 | $123,107.00 | ||||||
| Total cost | $175,048.00 | $130,725.00 | $326,878.00 | $199,207.00 | $99,866.00 | $123,107.00 | ||||||