In: Statistics and Probability
Almost all U.S. light-rail systems use electric cars that run on
tracks built at street level. The Federal Transit Administration
claims light-rail is one of the safest modes of travel, with an
accident rate of .99 accidents per million passenger miles as
compared to 2.29 for buses. The following data show the miles of
track and the weekday ridership in thousands of passengers for six
light-rail systems.
| City | Miles of Track | Ridership (1000s) | 
| Cleveland | 15 | 17 | 
| Denver | 17 | 37 | 
| Portland | 38 | 83 | 
| Sacramento | 21 | 33 | 
| San Diego | 47 | 77 | 
| San Jose | 31 | 32 | 
| St. Louis | 34 | 44 | 
| SSE | |
| SST | |
| SSR | |
| MSE | 
| X | Y | (x-x̅)² | (y-ȳ)² | (x-x̅)(y-ȳ) | 
| 15 | 17 | 196.00 | 849.306 | 408.000 | 
| 17 | 37 | 144.00 | 83.592 | 109.714 | 
| 38 | 83 | 81.00 | 1358.449 | 331.714 | 
| 21 | 33 | 64.00 | 172.735 | 105.143 | 
| 47 | 77 | 324.00 | 952.163 | 555.429 | 
| 31 | 32 | 4.00 | 200.020 | -28.286 | 
| 34 | 44 | 25.00 | 4.592 | -10.714 | 
| ΣX | ΣY | Σ(x-x̅)² | Σ(y-ȳ)² | Σ(x-x̅)(y-ȳ) | |
| total sum | 203 | 323 | 838.000 | 3620.9 | 1471 | 
| mean | 29.00 | 46.14 | SSxx | SSyy | SSxy | 
sample size ,   n =   7  
       
here, x̅ = Σx / n=   29.00   ,
    ȳ = Σy/n =   46.14  
          
       
SSxx =    Σ(x-x̅)² =    838.0000  
       
SSxy=   Σ(x-x̅)(y-ȳ) =   1471.0  
       
a)
estimated slope , ß1 = SSxy/SSxx =  
1471.0   /   838.000   =  
1.76
          
       
intercept,   ß0 = y̅-ß1* x̄ =   -4.76
  
          
       
so, regression line is   Ŷ =   -4.76
+   1.76 *x
b)
SSE=   (SSxx * SSyy - SS²xy)/SSxx =   
1038.708  
SST=SSyy=3620.9
SSR=SSt-SSE=2582.149
MSE=SSE/(n-2) = 207.742
| SSE | 1038.7 | 
| SST | 3620.9 | 
| SSR | 2582.1 | 
| MSE | 207.7 | 
c)
R² =    (Sxy)²/(Sx.Sy) =    0.7131
71.31% of variation in observation of y is explained by x
So,
es, it provides a good fit
d)
X Value=   30      
           
   
Confidence Level=   95%      
           
   
          
           
   
          
           
   
Sample Size , n=   7      
           
   
Degrees of Freedom,df=n-2 =   5  
           
       
critical t Value=tα/2 =   2.571   [excel
function: =t.inv.2t(α/2,df) ]      
           
          
           
   
X̅ =    29.00      
           
   
Σ(x-x̅)² =Sxx   838.0      
           
   
Standard Error of the Estimate,Se=   14.41  
           
       
          
           
   
Predicted Y at X=   30   is  
           
   
Ŷ =   -4.763   +   1.755  
*   30   =   47.898
          
           
   
standard error, S(ŷ)=Se*√(1/n+(X-X̅)²/Sxx) =   
5.470          
           
margin of error,E=t*Std error=t* S(ŷ) =  
2.5706   *   5.4704   =  
14.0621      
          
           
   
Confidence Lower Limit=Ŷ +E =    47.898  
-   14.0621   =  
33.8   
Confidence Upper Limit=Ŷ +E =   47.898  
+   14.0621   =  
62.0   
          
           
   
e)
standard error, S(ŷ)=Se*√(1+1/n+(X-X̅)²/Sxx) =  
15.4164          
   
margin of error,E=t*std error=t*S(ŷ)=   
2.5706   *   15.42   =  
39.6292
          
       
Prediction Interval Lower Limit=Ŷ -E =  
47.898   -   39.6292   =  
8.3
Prediction Interval Upper Limit=Ŷ +E =  
47.898   +   39.6292   =  
87.5