Question

In: Operations Management

Solve the following LP Problems using M Technique Method. Max Z=6x1 -3x2 -8x3 subject to 2x1...

Solve the following LP Problems using M Technique Method.
Max Z=6x1 -3x2 -8x3 subject to
2x1 +4x2 -3x3 ≥5 4x1+ x2 =9 2x1 -3x2 +2x3 ≤10
x1,x2,x3 ≥0

Solutions

Expert Solution


Related Solutions

MAX Z = 2x1 + 8x2 + 4x3 + 9x4 subject to 2x1 + 3x2 +...
MAX Z = 2x1 + 8x2 + 4x3 + 9x4 subject to 2x1 + 3x2 + 2x4 <= 8 2x2 + 5x3 + x4 <= 12 3x1 + x2 + 4x3 + 2x4 <= 15 and x1,x2,x3,x4 >= 0 apply the Primal Simplex Method to recover optimality.
Max Z = 2x1 + 8x2 + 4x3 subject to 2x1 + 3x2     ≤ 8 2x2...
Max Z = 2x1 + 8x2 + 4x3 subject to 2x1 + 3x2     ≤ 8 2x2 + 5x3     ≤ 12 3x1 + x2 + 4x3         ≤15 and x1,x2,x3≥0; Indicate clearly the optimal basic and nonbasic variables and their values and write the reduced cost of each optimal nonbasic variable.
MAX Z = 2x1 + 8x2 + 4x3 subject to 2x1 + 3x2 <= 8 2x2...
MAX Z = 2x1 + 8x2 + 4x3 subject to 2x1 + 3x2 <= 8 2x2 + 5x3 <= 12 3x1 + x2 + 4x3 <= 15 x1 + x3 = 11 and x1,x2,x3 >= 0 apply the Dual Simplex Method to recover feasibility.
Max Z = 2x1 + 8x2 + 4x3 subject to 2x1 + 3x2     ≤ 8 2x2...
Max Z = 2x1 + 8x2 + 4x3 subject to 2x1 + 3x2     ≤ 8 2x2 + 5x3     ≤ 12 3x1 + x2 + 4x3         ≤15 and x1,x2,x3≥0; Solve the LP you create by using the Simplex Method. You can use Big-M or Two-Phase Method if needed
Solve the following linear programming problem using generalised simplex method Maximise z= 2x1+3x2 subject to -2x1+x2>=3...
Solve the following linear programming problem using generalised simplex method Maximise z= 2x1+3x2 subject to -2x1+x2>=3 3x1+x2<=5 x1,x2>=0
Use the Simplex method to solve the following LP minimize −2x1 −3x2 + x3 + 12x4...
Use the Simplex method to solve the following LP minimize −2x1 −3x2 + x3 + 12x4 subject to −2x1 −9x2 + x3+ 9x4 + x5 = 0 1/3x1 + x2 −1/3x3 −2x4 + x6 = 0 x1,x2,x3,x4,x5,x6 ≥ 0
Simplex Method Consider the following linear programming problem: max z = 6x1 + 3x2 - 9x2...
Simplex Method Consider the following linear programming problem: max z = 6x1 + 3x2 - 9x2 - 9x3 + 15x4 s.t. 2x1 + 4x2 +6x3 + 8x4 <= 80    6x1 - 3x2 +3x3 + 6x4 <= 24    12x1 - 6x2 + 3x3 - 3x4 <= 30    x1, x2, x3, x4 >= 0 Rewrite the problem in standard form, that is, add the necessary slack variables in order to consider only equality constraints (and non-negativity). What is the...
Solve the following LP problem using graphical solution method. MAX: 5 X1 + 3 X2 Subject...
Solve the following LP problem using graphical solution method. MAX: 5 X1 + 3 X2 Subject to: 2 X1 − 1 X2 ≤ 2 6 X1 + 6 X2 ≥ 12 1 X1 + 3 X2 ≤ 5 X1, X2 ≥ 0
Solve the following linear programming model graphically: Max Z= 3x1 +4x2 Subject to: 2x1 + 4x2...
Solve the following linear programming model graphically: Max Z= 3x1 +4x2 Subject to: 2x1 + 4x2 <= 22 -x1 + 4x2 <= 10 4x1 – 2x2 <= 14 x1 – 3x2 <= 1 x1, x2, >=0 Clearly identify the feasible region, YOUR iso-profit line and the optimal solution (that is, d.v. values and O.F. Value.
Given the following LP max z = 2x1 + x2 + x3 s. t. 3x1 -...
Given the following LP max z = 2x1 + x2 + x3 s. t. 3x1 - x2 <= 8 x2 +x3 <= 4 x1,x3 >= 0, x2 urs (unrestricted in sign) A. Reformulate this LP such that 1)All decision variables are non-negative. 2) All functional constraints are equality constraints B. Set up the initial simplex tableau. C. Determine which variable should enter the basis and which variable should leave.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT