Question

In: Math

A tank contains 20 kg of salt dissolve in 7000 L of water. Brine that contain...

A tank contains 20 kg of salt dissolve in 7000 L of water. Brine that contain 0.041 kg of salt per liter of water enters the tank at a rate of 25 L/min. The solution is kept thoroughly mixed and drains from the tank at the same rate. How much Kg salt remains in the tank if as time approaches to infinite?

Solutions

Expert Solution


Related Solutions

A tank contains 9,000 L of brine with 11 kg of dissolved salt. Pure water enters...
A tank contains 9,000 L of brine with 11 kg of dissolved salt. Pure water enters the tank at a rate of 90 L/min. The solution is kept thoroughly mixed and drains from the tank at the same rate. (a) How much salt is in the tank after t minutes? (b) How much salt is in the tank after 10 minutes? (Round your answer to one decimal place.)
A tank contains 70 kg of salt and 2000 L of water. Water containing 0.4kg/L of...
A tank contains 70 kg of salt and 2000 L of water. Water containing 0.4kg/L of salt enters the tank at the rate 16L/min. The solution is mixed and drains from the tank at the rate 4L/min. A(t) is the amount of salt in the tank at time t measured in kilograms. (a) A(0) =  (kg) (b) A differential equation for the amount of salt in the tank is  =0=0. (Use t,A, A', A'', for your variables, not A(t), and move everything...
A tank contains 60 kg of salt and 1000 L of water. Pure water enters a...
A tank contains 60 kg of salt and 1000 L of water. Pure water enters a tank at the rate 12 L/min. The solution is mixed and drains from the tank at the rate 6 L/min. (a) What is the amount of salt in the tank initially? amount =  (kg) (b) Find the amount of salt in the tank after 3 hours. amount =   (kg) (c) Find the concentration of salt in the solution in the tank as time approaches infinity. (Assume...
A tank contains 90 kg of salt and 2000 L of water: Pure water enters a...
A tank contains 90 kg of salt and 2000 L of water: Pure water enters a tank at the rate 8 L/min. The solution is mixed and drains from the tank at the rate 4 L/min. What is the amount of salt in the tank initially? Find the amount f salt in the tank after 4.5 hours. Find the concentration of salt in the solution in the tank as the time approaches infinity. (Assume your tank is large enough to...
A tank contains 1000L of pure water. Brine that contains 0.05kg of salt per liter enters...
A tank contains 1000L of pure water. Brine that contains 0.05kg of salt per liter enters the tank at a rate of 5L/min. Also, brine that contains 0.09kg of salt per liter enters the tank at a rate of 10L/min. The solution is kept thoroughly mixed and drains from the tank at a rate of 15L/min. Answer the following questions. 1. How much salt is in the tank after t minutes? Answer (in kilograms): S(t)= 2. How much salt is...
A 4,500 litre tank contains 2,500 litres of brine. There is 50 kg of salt initially...
A 4,500 litre tank contains 2,500 litres of brine. There is 50 kg of salt initially present. Pure water is being put into the tank at 20 litres/min. Brine solution is draining away at a rate of 15 litres/min. a)Create a mathematical model of the dissolved salt in the solution. Give amount of salt in terms of time (t). b)Calculate how much salt is in the system after 15 minutes. State all of the assumptions that you are using. c)Create...
A tank contains 400 gallons of brine (salt in solution) in which 125 pounds of salt...
A tank contains 400 gallons of brine (salt in solution) in which 125 pounds of salt has been dissolved. Freshwater (with no salt added) runs into the tank at a rate of 4 gallons per minute, and the stirred mixture is drained from the tank at the same rate. (1) Find the amount of salt in the tank after an hour. (2) How long does it take to reduce the amount of salt in the tank to 10 pounds?
A tank initially contains 80gal of pure water. Brine containing 2lb of salt per gallon enters...
A tank initially contains 80gal of pure water. Brine containing 2lb of salt per gallon enters the tank at 2gal/min, and the (perfectly mixed) solution leaves the tank at 3 gal/min. Thus the tank is empty after exactly 80 min. (A) Find the amount of salt in the tank after t minutes. (b) What is the maximum amount of salt ever in the tank?
A tank contains 100 gal of water. Brine enters the tank at the rate of 3...
A tank contains 100 gal of water. Brine enters the tank at the rate of 3 gal/min. The mixture, thoroughly stirred, leaves the tank at the rate of 2 gal/min. If the salt concentration in the brine at the end of 20 minutes is to be 2 lb/gal, what should be the salt concentration in the brine entering the tank?
A tank contains 100 gal of water. Brine enters the tank at the rate of 3...
A tank contains 100 gal of water. Brine enters the tank at the rate of 3 gal/min. The mixture, thoroughly stirred, leaves the tank at the rate of 2 gal/min. If the salt concentration in the brine at the end of 20 minutes is to be 2 lb/gal, what should be the salt concentration in the brine entering the tank?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT