Question

In: Physics

3. A ski jumper starts from the top of a frictionless track making a 60° angle...

3. A ski jumper starts from the top of a frictionless track making a 60° angle with the ground. The starting point is 25.0-m above the ground, and the jumper is launched from the upturned end of the track 3.00-m above the ground at an angle of 60°.

a) What is her speed as she leaves the jump?

b) How far away from the track does the jumper land?

Solutions

Expert Solution

Here we apply mechanical energy conservation and concept of kinematics and parabolic motion.


Related Solutions

A ski jumper starts from rest 54.0 m above the ground on a frictionless track and...
A ski jumper starts from rest 54.0 m above the ground on a frictionless track and flies off the track at an angle of 45.0° above the horizontal and at a height of 19.0 m above the ground. Neglect air resistance. (a) What is her speed when she leaves the track? m/s (b) What is the maximum altitude she attains after leaving the track? m (c) Where does she land relative to the end of the track? m
A ski jumper starts from rest from point A at the top of a hill that...
A ski jumper starts from rest from point A at the top of a hill that is a height h1 above point B at the bottom of the hill. The skier and skis have a combined mass of 80 kg. The skier slides down the hill and then up a ramp and is launched into the air at point C that is a height of 10m above the ground. The skier reaches point C traveling at 42m/s. (a) Is the...
In a fireworks display, a firecracker is launched at an angle from the top of a...
In a fireworks display, a firecracker is launched at an angle from the top of a high tower of height h0 = 50.0 m. As a result of the firecracker’s design, its position coordinates are of the form x(t) = A + Bt 2 and y(t) = C + Dt 3 , where A, B, C, and D are constants. The acceleration of the firecracker 1.00 second after firing is = (4.00î + 3.00ĵ) m/s 2 . Taking the origin...
A small box is released from rest at the top of a frictionless ramp that is...
A small box is released from rest at the top of a frictionless ramp that is inclined at 36.9 0 above the horizontal. How long does it take the box to travel 8.00 m to the bottom of the incline?
A hoop with a mass of 3.15 kg starts from rest at the top of a...
A hoop with a mass of 3.15 kg starts from rest at the top of a ramp. The ramp is 5.0 m long and 2.1 m high. What is the rotational kinetic energy of the hoop after it has rolled without slipping to the bottom? 16 J 32 J 22 J 78 J
A skier with a mass of 75kg starts from rest at the top of a slope...
A skier with a mass of 75kg starts from rest at the top of a slope which is 110m tall and skis to the bottom. Hint: you must use conservation of energy to solve both parts of this problem. a. What is the skier’s speed at the bottom of the slope if there is no friction? b. If the speed of the skier at the bottom of the slope is actually 20m/s, how much work is done by friction?
A skier starts from rest at the top of a hill that is inclined at 10.8°...
A skier starts from rest at the top of a hill that is inclined at 10.8° with respect to the horizontal. The hillside is 245 m long, and the coefficient of friction between snow and skis is 0.0750. At the bottom of the hill, the snow is level and the coefficient of friction is unchanged. How far does the skier glide along the horizontal portion of the snow before coming to rest?
A skier starts from rest at the top of a hill that is inclined at 10.9°...
A skier starts from rest at the top of a hill that is inclined at 10.9° with respect to the horizontal. The hillside is 190 m long, and the coefficient of friction between snow and skis is 0.0750. At the bottom of the hill, the snow is level and the coefficient of friction is unchanged. How far does the skier glide along the horizontal portion of the snow before coming to rest?
A ski starts from rest and slides down a 30 ∘ incline 70 m long. A)If...
A ski starts from rest and slides down a 30 ∘ incline 70 m long. A)If the coefficient of friction is 0.075, what is the ski's speed at the base of the incline? B)If the snow is level at the foot of the incline and has the same coefficient of friction, how far will the ski travel along the level? Use energy methods.
A ski starts from rest and slides down a 30 ∘ incline 70 m long. a)...
A ski starts from rest and slides down a 30 ∘ incline 70 m long. a) If the coefficient of friction is 0.095, what is the ski's speed at the base of the incline? b) If the snow is level at the foot of the incline and has the same coefficient of friction, how far will the ski travel along the level? Use energy methods.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT