Question

In: Mechanical Engineering

) Consider a 1.5-m-high and 3-m-wide glass window whose thickness is 6 mm and thermal conductivity...

) Consider a 1.5-m-high and 3-m-wide glass window whose thickness is 6 mm and thermal conductivity is k = 0.88 W/m · °C. Determine the steady rate of heat transfer through this glass window and the temperature of its inner surface for a day during which the room is maintained at 27°C while the temperature of the outdoors is -7°C. Take the convection heat transfer coefficients on the inner and outer surfaces of the window to be h1= 11 W/m2 · °C and h2 =26 W/m2 · °C, and disregard any heat transfer by radiation

Solutions

Expert Solution


Related Solutions

Consider a large plate of thickness 50 mm and thermal conductivity of k= 69 W/m.C in...
Consider a large plate of thickness 50 mm and thermal conductivity of k= 69 W/m.C in which heat is generated uniformly at a constant rate of 600 kW/m3. One side of the plate is insulated while the other side is subjected to convection to the environment at 30oC with a heat transfer coefficient of h= 94 W/m^2.C. considering six equal spaced nodes with a nodal spacing of 10 mm: (a) obtain the Finite Difference formulation of this problem, (b) determine...
A 3-mm-diameter and 12-m-long electric wire is tightly wrapped with a 1.5-mm-thick plastic cover whose thermal...
A 3-mm-diameter and 12-m-long electric wire is tightly wrapped with a 1.5-mm-thick plastic cover whose thermal conductivity and emissivity are k 5 0.20 W/m·K and « 5 0.9. Electrical measurements indicate that a current of 10 A passes through the wire and there is a voltage drop of 7 V along the wire. If the insulated wire is exposed to calm atmospheric air at T` 5 30°C, determine the temperature at the interface of the wire and the plastic cover...
Consider the vertical rear window of an automobile that has a thickness L= 9 mm and...
Consider the vertical rear window of an automobile that has a thickness L= 9 mm and height H=0.5 m with heating wires that create uniform volumetric heating. The window interior is exposed to ambient air at 10°C and the window exterior to air at -10°C which moves in parallel flow over the surface with a velocity of 20 m/s. The surface temperature of the window exterior is 12°C. Find the volumetric heating rate necessary to keep the window interior at...
A sheet of metal of 2 m ´ 2 m and 1.5 mm thickness is being tested in a wind tunnel.
A sheet of metal of 2 m ´ 2 m and 1.5 mm thickness is being tested in a wind tunnel. a. Calculate the critical velocity, in m/s, at which the boundary layer will remain laminar. b. For an upstream velocity of 35 m/s, what percentage of the metal sheet surface will have a laminar boundary layer. c. For each of the previous cases (all laminar B.L and mixed laminar/turbulent B.L), calculate the drag force on the plate, in N....
3. A stainless steel sphere of thermal conductivity 16 W/m · K with a diameter of...
3. A stainless steel sphere of thermal conductivity 16 W/m · K with a diameter of 4 cm is exposed to a convective environment of 15 W/m2 · K, 20?C. Heat is generated uniformly in the sphere at a rate of 1.0 MW/m3 . Determine the steady-state temperature of the sphere at its center and its surface. Also determine the heat flux at a radius of 1.5 cm.
A closed rectangular tank 1.2 m high, 2.4 m long and 1.5 m wide is two-thirds...
A closed rectangular tank 1.2 m high, 2.4 m long and 1.5 m wide is two-thirds full of gasoline (specic gravity 0.8). Calculate the acceleration which may be imparted to the tank so that the bottom front end of the tank is just exposed. Also calculate the total forces on each end of the tank and show that the dierence between these forces equals the unbalanced force necessary to accelerate the liquid mass in the tank.
A rectangular tank 1.5 m wide, 3 m long and 1.8 m deep contains water to...
A rectangular tank 1.5 m wide, 3 m long and 1.8 m deep contains water to a depth of 1.2 m. Find the horizontal acceleration that may be imparted to the tank in the direction of its length so that 1. the water is just about to spill 2. the front bottom corner of the tank is just exposed. 3. the bottom of the tank is exposed to its midpoint. For (2) and (3) above, compute the volume of the...
A circumferential fin (k= 55 W/m C) of thickness 3 mm and length 3 cm is...
A circumferential fin (k= 55 W/m C) of thickness 3 mm and length 3 cm is attached to a pipe of diameter 3 cm. The fin is exposed to a convection environment at 23 C with h=25 W/m2 oC. The fin base temperature is 223 C. Calculate the heat lost (qf) by the fin.
Consider a single pane glass window that has an area of 8ft^2 and is 3/16” thick....
Consider a single pane glass window that has an area of 8ft^2 and is 3/16” thick. The outside temperature is -10oC and the inside temperature is 21oC. [9] a.How much heat flows through the window in 8 hours? Use an R-value. b. In reality, all surfaces have a thin layer of air covering them that does not move. This air“film” is about .0005m thick. Calculate how much heat flows through the window in the 8 hour period with the addition...
A 4-m-high and 6-m-wide wall consists of a long 18x30 cm2 cross section of horizontal bricks...
A 4-m-high and 6-m-wide wall consists of a long 18x30 cm2 cross section of horizontal bricks (K=0.72W/mC) separated by 3-cm-thick plaster layer (K=0.22W/mC). There are also 2-cm-thick plaster layers on each side of the wall, and a 2-cm-thick rigid form (K=0.026W/mC) on the inner side of the wall. The indoor and outdoor temperatures are 22C and -4 C, and the combined convection and radiation heat transfer coefficients on the inner and outer walls are 10W/m2C and 20W/m2C, respectively. Determine the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT