In: Finance
11.) Mr. Jones has a 2-stock portfolio with a total value of $510,000. $175,000 is invested in Stock A and the remainder is invested in Stock B. If standard deviation of Stock A is 16.95%, Stock B is 11.45%, and correlation between Stock A and Stock B is –0.20, what would be the expected risk on Mr. Jones’ portfolio (standard deviation of the portfolio return)?
Standard deviation of the portfolio return | 8.54% | ||||||||||||||||||
Working: | |||||||||||||||||||
Step-1:Calculation of weight of each Stock | |||||||||||||||||||
Total Investment | 5,10,000 | ||||||||||||||||||
Less investment in Stock A | 1,75,000 | ||||||||||||||||||
Investment in Stock B | 3,35,000 | ||||||||||||||||||
Weight of Investment in: | |||||||||||||||||||
Stock A | 1,75,000 | / | 5,10,000 | = | 0.34 | ||||||||||||||
Stock B | 3,35,000 | / | 5,10,000 | = | 0.66 | ||||||||||||||
Total | 1.00 | ||||||||||||||||||
Step-2:Calculation of Standard deviation of return of portfolio | |||||||||||||||||||
Standard deviation of return of portfolio | = | ((WA^2)*(SdA^2)+(WB^2)*(SdB^2)+2*WA*WB*SdA*SdB*cAB)^(1/2) | Where, | ||||||||||||||||
= | ((0.34^2)*(0.1695^2)+(0.66^2)*(0.1145^2)+2*0.34*0.66*0.1695*0.1145*-0.20)^(1/2) | WA | Weight fo A | 0.34 | |||||||||||||||
= | 0.0854 | WB | Weight of B | 0.66 | |||||||||||||||
SdA | Standard deviation of A | 0.1695 | |||||||||||||||||
Thus, Standard deviation of return of portfolio is 8.54% | SdB | Standard deviation of B | 0.1145 | ||||||||||||||||
cAB | correlation between Stock A and Stock B | -0.20 | |||||||||||||||||